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Chapter 1

Introduction

1.1 Overview

Consider any simple, undirected, connected, and locally-finite1 graph G = (V,E). There

are several random processes on G that are of interest, but perhaps the most classical

and fundamental process is the simple random walk (SRW) on G. Namely, the SRW

on G is the stochastic process {Xt}∞t=0 such that for any t ∈ N := {0, 1, 2, . . . }, we have

Xt ∈ V and

P(Xt+1 = y | Xt = x) =
1

deg(x)

for all {x, y} ∈ E. In words, at each timestep the process transitions to any neigh-

boring vertex with equal probability. Of course, the distribution of X0 (or the initial

distribution) may be arbitrary.

Since G is connected and locally-finite, V is countable, and let us assume that V is

infinite. Then, it is natural to ask whether it is possible for the SRW to get “lost” in

the graph G. This is captured by notions of recurrence and transience, which are basic

questions regarding SRWs.

Definition 1 (Recurrence and Transience). Consider the return probability

p = P(There is T > 0 such that XT = X0).

Then, {Xt}∞t=0 is recurrent if p = 1 and transient if p < 1.

1This means that every vertex has finite degree.
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Since {Xt}∞t=0 is an irreducible, time-homogeneous Markov chain, one can easily

check that {Xt}∞t=0 is either recurrent for any initial distribution or transient for any

initial distribution. Hence, it is well-defined to say that G is recurrent (resp. transient)

if {Xt}∞t=0 is recurrent (resp. transient). Moreover, since the transition probabilities are

fixed over time, we see that recurrence (resp. transience) implies that a.s. X0 is visited

infinitely (resp. finitely) often. In fact, since G is connected, it follows that a.s. every

v ∈ V is visited infinitely (resp. finitely) often: For any x, y ∈ V , the probability of

the process eventually visiting y from x is at least some positive constant pxy which is

independent of time.

The pioneering result in this area that comes with an initial surprise is Pólya’s

recurrence theorem [15], which states that the SRW on Zd is recurrent if d ∈ {1, 2}
and transient if d ≥ 3. An elementary proof can be given by counting the number of

paths that return to the origin after 2n steps. Indeed, this relies on the fact that Zd

is bipartite and space-homogeneous. One may wonder if there is a general theory to

determine whether G is recurrent or transient: It turns out there is a nice connection

with electrical network theory that becomes more natural once we slightly generalize

our setup. We discuss the generalization below.

Equip G with any weight function w : E → (0,∞). Then, one can consider the

random walk {Xt}∞t=0 on the weighted graph (G,w), where transition probabilities are

now proportional to edge-weights. Namely, for any t ∈ N, we have

P(Xt+1 = y | Xt = x) =
w(x, y)∑
y∼xw(x, y)

for all y ∼ x (which means {x, y} ∈ E). Since {Xt}∞t=0 is still a time-homogeneous

Markov chain on V, all discussions above regarding recurrence or transience also hold in

the weighted case. In particular, it is again well-defined to say that (G,w) is recurrent

or transient. Roughly speaking, the connection with electrical network theory begins

by viewing (G,w) as an electrical network, where each e ∈ E is a resistor that has

conductance w(e). We will further review this connection in section 1.2 below.

The main mathematical object of this paper is a further generalization of weighted

random walks, where we remove the assumption of time-homogeneity. For instance, one

can imagine how the conductance of an actual resistor could physically change over time.

We make this generalization by assuming that at each time t ∈ N, the weight function on
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G is given by a random variable wt. Such processes are generally known as random walks

in changing environments (RWCE). Again, the basic question of interest is recurrence

or transience, but the various implications that were true in the time-homogeneous case

may no longer coincide for general RWCEs. Hence, one needs more care in making the

question concrete. We will formally discuss RWCEs in section 1.3.

A complete theory for recurrence or transience of RWCEs is far out of reach compared

to the time-homogeneous case. Current main questions revolve around finding natural,

general conditions on {wt}∞t=0 that guarantee recurrence or transience of the RWCE. In

chapter 2, we will illustrate some techniques that are used to show the recurrence or

transience of RWCEs. In section 2.1, we focus on monotone bounded RWCEs, which

include open problems that are currently of most interest [2]. Here, the main proof idea

is to construct a super/submartingale involving voltages on the electrical network G and

then use the optional stopping theorem to bound the probability of return. In section

2.2, we consider a non-monotone RWCE on Z with uniformly converging weights. In

this special case, we show that the Lyapunov central limit theorem is enough to prove a

phase transition previously observed by [14] which depends on the rate of convergence

of the weights.

To conclude, in chapter 3, we present our main result which is also the novel con-

tribution of this thesis. Namely, we explore the limits of the martingale approach from

section 2.1 and derive a condition for recurrence or transience that holds for any graph

G. This can be viewed as an attempt to overcome the fact that the voltage sequence,

which is a natural martingale on a single weighted graph, is no longer as nice on a

sequence of weighted graphs (or in changing environments).

1.2 Electrical Network Theory

In this section, we recall important results on the characterization of recurrence or

transience given by electrical network theory. The first chapter of [10] provides a nice

introduction with detailed proofs for the interested reader. Further standard references

include [1, 9, 13].

We begin with some notation. Fix any G = (V,E) with the usual assumptions and

take any w : E → (0,∞). Fix any s ∈ V, which we consider as the origin of G. For

n ≥ 0, let Vn := {v ∈ V : d(s, v) ≤ n} and ∂Vn := {v ∈ V : d(s, v) = n} where d is the
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shortest-path distance on G. Finally, let {Xt}∞t=0 denote the weighted random walk on

(G,w) and τn denote the first time t ∈ N such that Xt ∈ ∂Vn.

Then, the return probability from (and to) s ∈ V, say p, satisfies

∑
u∼s

w(s, u)

w(s)
Pu(τn < τ0) → 1− p

as n → ∞ where w(s) :=
∑

u∼s w(s, u) and Pu is the probability measure assuming

X0 = u. Note that Pu(τn < τ0) only depends on the finite subgraph of G induced by

Vn, which we denote as Gn = (Vn, En). The key observation of electrical network theory

is the fact that Pu(τn < τ0) equals the voltage of u, say v(u), when viewing (Gn, w) as

an electrical network with s as the source and ∂Vn as the sink so that v(x) = 1 for any

x ∈ ∂Vn. This follows from the fact that both v(·) and P·(τn < τ0) are harmonic on

Vn \ ({s} ∪ ∂Vn) with equal boundary conditions (see [10] for further details).

We now elaborate further on the basic theory of finite electrical networks. For this

part alone, let G = (V,E) be finite with weights w : E → (0,∞). Fix s ∈ V as the

source and t ∈ V \ {s} as the sink. The central objects of electrical network theory are

s/t flows which are defined below.

Definition 2 (s/t flows). We say that i : V 2 → [0,∞) is an s/t flow if

i(u, v) = −i(v, u),

i(u, v) = 0 if {u, v} /∈ E,

Ju :=
∑
v∼u

i(u, v) = 0 for any u /∈ {s, t}.

One can check that Js = −Jt, and we define |i| := |Js| as the size of the flow i. We

say that i is a unit flow if |i| = 1. Moreover, we assign an energy to the flow i, given by

E(i) :=
∑
e∈E

i2(e)r(e)

where r(e) := 1/w(e) is the resistance of e ∈ E. Similarly, w(e) can be thought as the

conductance of edge e.

Among all possible unit s/t flows on (G,w), there is a unique flow i which obtains

the minimum possible energy. We call i the Kirchoff flow, as i is exactly the unique flow
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that satisfies the Kirchoff potential law: Namely, we have

n∑
j=1

i(vj, vj+1)r(vj, vj+1) = 0

for any cycle v1, v2, . . . , vn, vn+1 = v1. The Kirchoff flow is nice as it induces a voltage

function v : V → [0,∞) where v(s) = 0 and

v(u) :=
n∑

j=1

i(vj, vj+1)r(vj, vj+1)

for any path (s = v1, v2, . . . , vn+1 = u) from s to u. We remark that this is only well-

defined when i is a Kirchoff flow.

The energy of the Kirchoff flow i also gets a special name, and we say that

R(s, t) :=
∑
e∈E

i2(e)r(e)

is the effective resistance between s and t in (G,w). As mentioned above, the effective

resistance equals the minimum possible energy among all unit flows, and this is known as

Thomson’s principle. Intuitively, the network (G,w) can be reduced to a single resistor

between s and t with resistance R(s, t). Also, we remark that the voltage at t induced

by i will exactly equal R(s, t). Hence, to get v(t) = 1, one should rescale the flow i so

that |i| = 1/R(s, t).

We are now ready to describe the connection between recurrence or transience and

electrical network theory. Let Rn denote the effective resistance between s and ∂Vn in

(Gn, w). Indeed, ∂Vn may not be a single vertex, and in this case we identify all vertices in

∂Vn into a single vertex while removing any self-loops that occur. An extremely useful

property of effective resistance is given by Rayleigh’s monotonicity principle, which

states that the effective resistance of a network can only increase if we only increase

edge-resistances. It follows that {Rn}∞n=0 is increasing, hence the limit R := limn→∞Rn

always exists. The amazing result of the theory determines the return probability p as

p = 1− 1

w(s)R
.

In particular, the random walk on (G,w) is recurrent if and only if R = ∞.
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1.3 Random Walk in Changing Environments

Here, we formally introduce our main object of study. Let (Ω,F ,P) denote the under-

lying probability space.

Definition 3 (RWCE). A random walk in changing environment (RWCE) on a graph

G = (V,E) is a stochastic process {⟨Xt, wt⟩}t∈N such that for any y ∈ V, we have

P(Xt+1 = y | Ft) =
wt(Xt, y)∑

z∼Xt
wt(Xt, z)

where Xt : Ω → V , wt : Ω → (0,∞)E, and Ft = σ(X0, . . . , Xt, w0, . . . , wt) for each

t ∈ N.

In words, at time t ∈ N, the RWCE traverses a neighboring edge from Xt with prob-

ability proportional to its weight, which is given by the realization of wt. By requiring

the edge-weights to be positive, we are only considering proper RWCEs. Moreover, for

any {x, y} /∈ E, we write wt(x, y) = 0 by convention.

While the term RWCE was coined by Amir et al. in [2], it includes the large class

of self-interacting walks which were studied even before. A well-known example is the

linearly edge-reinforced random walk by Coppersmith and Diaconis [5] from the eighties.

Other examples include the once-reinforced random walk [6] or the “true” self-avoiding

walk with bond repulsion [16].

As aforementioned in our discussion in section 1.1, we need to be more careful

when discussing recurrence or transience of general RWCEs. This is because the return

probability may change over time, and it is also not obvious whether infinite visits

to a single vertex implies infinite visits to every vertex. We give a simple example

below that shows how different time-inhomogeneous processes can be compared to time-

homogeneous ones.

Example 1. Let G = (V,E) where V = {a, b, c} and E = {{a, b}, {b, c}}. Let X0 = a

and take {wt}∞t=0 where wt(a, b) = 1 and wt(b, c) = (t + 1)2 for each t ≥ 0. Finally,

let {⟨Xt, wt⟩}t∈N denote the resulting RWCE on G. Of course, each wt is actually

deterministic in this case.

For each t ≥ 0, consider the event At = {X2t+2 = a}. Since X2t+1 = b holds for any
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t ≥ 0, we see that

∞∑
t=0

P(At) =
∞∑
t=0

1

1 + (t+ 1)2
< ∞.

Thus, by the first Borel-Cantelli lemma, vertex a is a.s. visited finitely often. However,

vertex b and c are a.s. visited infinitely often. Indeed, this never occurs in the time-

homogeneous case.

In most interesting examples of RWCEs that we consider, however, the various no-

tions of recurrence and transience will coincide. Hence, we follow [2] and adopt the

strongest definitions of recurrence or transience as below.

Definition 4 (Recurrence/Transience/Mixed-Type). An RWCE on G = (V,E) is re-

current if a.s. every vertex is visited infinitely often. It is transient if a.s. every vertex

is visited finitely often. Otherwise, the RWCE is of mixed-type.

Of course, the RWCE in example 1 is of mixed-type. In this example, note that

the probability of jumping from b to a tends to 0 as t → ∞. The following condition

prevents this from happening.

Definition 5 (Elliptic RWCE). Let {⟨Xt, wt⟩}t∈N be an RWCE on G = (V,E). For each

{x, y} ∈ E, assume that P(Xt+1 = y | Xt = x), whenever well-defined, is bounded away

from 0 as t varies. Then, we say that {⟨Xt, wt⟩}∞t=0 is elliptic (uniformly in time).

This is useful since any elliptic RWCE that a.s. visits some vertex infinitely (resp.

finitely) often is also recurrent (resp. transient). The argument is the same as the time-

homogeneous case. Namely, fix any x, y ∈ V . Then, by ellipticity (and connectivity of

G), whenever the RWCE is at x, the probability of eventually visiting y is at least some

constant pxy > 0 independent of time. Hence, if x is visited infinitely often, then a.s. y

is visited infinitely often. The contrapositive implies that if y is visited finitely often,

then a.s. x is visited finitely often.

Throughout this paper we will mostly focus on bounded RWCEs, which are a special

case of elliptic RWCEs. We note that there are many interesting examples and problems

even with this assumption.

Definition 6 (Bounded RWCE). Let {⟨Xt, wt⟩}t∈N be an RWCE on G = (V,E). Then,

the RWCE is bounded if there are deterministic weights a, b : E → (0,∞) so that a.s.

a(e) ≤ wt(e) ≤ b(e) for each t ∈ N and e ∈ E.
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Finally, a particularly important question is whether there is an essential difference

between adaptive and nonadaptive RWCEs regarding recurrence or transience.

Definition 7 (Adaptive/Nonadaptive). An RWCE is nonadaptive if the distribution of

wt+1 given w0, . . . wt is independent of X0, . . . , Xt. Otherwise, the RWCE is adaptive.

We will illustrate this question further in section 2.1 below.



Chapter 2

Two Illustrative Problems

The purpose of this chapter is to introduce interesting problems and techniques involving

recurrence or transience of bounded RWCEs. We begin with the monotone bounded

problem, then show a phase transition for a non-monotone RWCE on Z.

2.1 Monotone Bounded RWCEs

Let G = (V,E) be a graph under the usual conditions and {⟨Xt, wt⟩}t∈N be an RWCE

on G. Consider any condition on {wt}t∈N that requires (G,wt) to be a.s. recurrent for

each t ∈ N. In order to demonstrate a fundamental difference between adaptive and

nonadaptive RWCEs, we are most interested in conditions that imply recurrence for

nonadaptive RWCEs but not for adaptive RWCEs. Of course, one can develop the

same question for the transient case, which we will also consider. For sake of simplicity,

however, we will focus on the recurrent case in the following discussions.

An interesting candidate for such a condition was given by Amir et al. in [2]. Namely,

they required {wt}t∈N to be a.s. increasing (edgewise) and bounded above by some

recurrent (G,w). This means wt(e) ≤ wt+1(e) ≤ w(e) for each t ∈ N and e ∈ E. By

Rayleigh’s monotonicity principle, it follows that each (G,wt) is a.s. recurrent. In [2],

they further constructed an adaptive RWCE on Z2 that satisfies the monotone-bounded

condition but is transient. However, it remains an open question to show that any

nonadaptive walk satisfying the monotone-bounded condition must be recurrent. We

term this problem as the monotone bounded problem for RWCEs. Also, we note that the

analogous case for transience (decreasing weights bounded below by a transient graph)

9
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was partially affirmed by Dembo et al. in [8].

An important remark is that we are interested in results for arbitrary graphs G. If G

is required to be a tree, then Amir et al. [2] showed that there is no difference between

adaptive and nonadaptive walks under the monotone-bounded condition: One will al-

ways have recurrence. This can be thought as a “lower-bound” result for trees, as there

is no difference regarding adaptiveness under any condition implying the monotone-

bounded condition for trees. However, the monotone bounded problem is completely

open for general graphs G.

The situation is quite similar even when we restrict our attention to a special type of

monotone bounded RWCEs, namely once-reinforced random walks. A once-reinforced

random walk on G is an RWCE where w0(e) = 1 for any e ∈ E and wt(e) = 1 + δ

for some universal δ > 0 if e ∈ E has been crossed at least once up to time t. When

G is a tree, Collevecchio et al. completely characterized the regions of δ that imply

recurrence or transience by introducing a quantity called the branching-ruin number [4].

In contrast, on Z2 the question of recurrence or transience remains completely open.

We remark that partial progress has been made by Kious et al. [12] for graphs of the

form Z× Γ where Γ is finite.

In the remaining section, we discuss the proof of Amir et al.’s result on the monotone

bounded problem for trees which we mentioned above. The proof illustrates a standard

technique of showing recurrence by constructing a supermartingale and then using the

optional stopping theorem to bound the probability of return.

Proposition 1 (Amir et al.). Let G = (V,E) be any tree with the usual assumptions.

Let {⟨Xt, wt⟩}t∈N be any RWCE on G such that {wt}t∈N is increasing and bounded above

by (G,w∞) which is recurrent (we assume w0, w∞ are deterministic). Then, {Xt}t∈N is

also recurrent.

Before proceeding to the proof, we briefly recall the optional stopping theorem as it

will be used throughout this paper. Let {Xt}t∈N be a supermartingale (resp. submartin-

gale) and τ be a stopping time with respect to the filtration {Ft}t∈N. The optional

stopping theorem states that if there is C > 0 such that |Xt∧τ | ≤ C for all t ∈ N, then
E[Xτ ] ≤ E[X0] (resp. E[Xτ ] ≥ E[X0]). Of course, there are other versions of the theorem

as well, but for our purposes this version suffices. We now proceed to the proof.

Proof of Proposition 1. Fix the origin s ∈ V and assume that X0 = x ∈ V \ {s} is
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determined. Also fix n large enough so that x ∈ Vn and consider Gn = (Vn, En). Let i

denote the unit Kirchoff flow on (Gn, w∞) from s to ∂Vn and define

ft(v) :=
∑
e

i(e)rt(e)

for each v ∈ Vn where the sum is over edges of the unique path from s to v. First, it is

clear that {ft(v)}t∈N is decreasing since {wt}t∈N is increasing. Next, by definition of a

flow, one can see that

E[ft(Xt+1) | Ft] = ft(Xt) +
∑
y∼Xt

wt(Xt, y)

wt(Xt)
i(e)rt(Xt, y)

= ft(Xt)

if t < τ where τ = inf{t ∈ N : Xt ∈ {s} ∪ ∂Vn}. Hence, we see that

E[ft+1(Xt+1) | Ft] ≤ E[ft(Xt+1) | Ft] = ft(Xt)

if t < τ and thus {gt∧τ}t∈N is a supermartingale where gt = ft(Xt). Since ft is decreasing

over time and Vn is finite, we see that |gt| ≤ C for some constant C > 0 independent of

t. By the optional stopping theorem,

E[fτ (Xτ )] ≤ E[f0(x)].

From our definition above, for any y ∈ ∂Vn, note that f∞(y) is the voltage at y induced

by i, hence f∞(y) = Rn which is the effective resistance between s and ∂Vn in (Gn, w∞).

Since ft is decreasing, ft(y) ≥ f∞(y) = Rn for any t ∈ N and we get

E[fτ (Xτ )] ≥ Rn · P(Xτ ∈ ∂Vn)

since fτ (s) = 0. Thus,

P(Xτ ∈ ∂Vn) ≤
E[f0(x)]

Rn

→ 0
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as n → ∞ since (G,w∞) is recurrent and

f0(x) ≤
∑
s→x

r0(e)

which is a constant independent of n. In other words, the RWCE a.s. returns to s. At

any time of return, the RWCE is again monotone bounded, hence the RWCE returns

to s infinitely often. Finally, since the RWCE is bounded, a.s. every vertex is visited

infinitely often and we conclude our proof.

The key part of Amir et al.’s proof above is constructing the supermartingale ft(Xt).

However, this doesn’t work for general graphs G since there may be multiple paths from

s to v and ft(v) may not even be well-defined. In chapter 3, we construct a different

supermartingale that cannot imply a result as strong as Proposition 1 but nonetheless

works for any graph G.

2.2 A Non-Monotone RWCE on Z

In this section, we consider a nonadaptive, non-monotone RWCE on the nearest-neighbor

graph of Z, say G = (V,E). Moreover, for notational convenience we index time by

t ∈ {1, 2, . . . }. For each t ≥ 1 and x ∈ Z, let

wt(x− 1, x) := 1 + (−1)x+tεt

where εt = 1/tα for some constant α > 0. Then, we obtain a sequence of deterministic

weight functions {wt}∞t=1. In fact, w1 is not proper, but we will allow this throughout

this section. For any fixed t, note that wt(e) alternates between 1+ εt and 1− εt as one

traverses e ∈ E from left to right. Similarly, for any fixed e ∈ E, the values of wt(e)

alternate as 1±ε1, 1∓ε2, 1±ε3, . . . . In particular, we see that {wt}∞t=1 is non-monotone.

Let {⟨Xt, wt⟩}∞t=1 denote the RWCE on G where {wt}∞t=1 are given as above. Also let

X1 = 0. In this section, we prove the following phase transition which was previously

observed in [14].

Proposition 2. Let {⟨Xt, wt⟩}∞t=1 denote the RWCE above. Then, {Xt}∞t=1 is recurrent

if α ≥ 1/2 and transient if α < 1/2.
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Let w∞ denote the all-ones weight function on E so that wt → w∞ edgewise. For

any α > 0, note that supe∈E |wt(e)− w∞(e)| = εt → 0 as t → ∞. Hence, Proposition 2

shows that uniform convergence of weights is not sufficient, and the rate of convergence

is in fact crucial. On the other hand, considering Proposition 1 for any once-reinforced

random walk on Z shows that uniform convergence of weights is also not necessary.

The proof of Proposition 2 crucially relies on the fact that Xt is expressible as the

sum of t independent Bernoulli variables, hence we are able to use classical tools from

probability theory. We begin with the proof of the transience case of Proposition 2.

Proof of Proposition 2 (Transience). Since G is bipartite and X1 = 0, note that for each

t ≥ 1,

Xt =
t−1∑
k=1

ξk

where the ξk are independent and ξk = 1 with probability (1 + εk)/2 and ξk = −1

otherwise. Moreover,

E[Xt] =
t−1∑
k=1

εk.

Since ξk ∈ [−1, 1], by Hoeffding’s inequality, we have

P(Xt = 0) ≤ P(|Xt − E[Xt]| ≥ E[Xt]) ≤ exp

(
−E[Xt]

2

2t− 2

)
for t > 1. Since E[Xt]

2/(2t− 2) > 0, we further have

P(Xt = 0) ≤ j!(
E[Xt]2

2t−2

)j
for any j ≥ 0. Since E[Xt] = Θ(t1−α), we see that P(Xt = 0) = O(1/t(1−2α)j) for any

j ≥ 0. Thus, if (1− 2α)j > 1 or equivalently α < (1− 1/j)/2, then

∞∑
t=1

P(Xt = 0) < ∞.

Indeed, by Borel-Cantelli, we a.s. have Xt = 0 finitely often. Moreover, since {wt}∞t=2 is

bounded, it follows that a.s. every vertex in Z is visited finitely often. Letting j → ∞,

we conclude that {Xt}∞t=1 is transient for all α < 1/2 as desired.
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We now show the recurrent case of Proposition 2.

Proof of Proposition 2 (Recurrence). We will construct a deterministic sequence of times

{tk}∞k=1 such that tk ≥ 1 and

P(Xtk+1
< 0 | Xtk) ≥ β

for some constant β > 0 independent of k. We claim that this implies that a.s. Xt = 0

infinitely often. To see this, first note that if Xt < 0, then a.s. there is T > t such that

XT = 0. This follows from a simple coupling argument as the SRW on Z is recurrent,

while our RWCE always has a positive bias to the right (which diminishes over time).

On the other hand, if Xt > 0, a.s. there must exist tj > t such that Xtj < 0. This

implies the existence of some T ∈ (t, tj) such that XT = 0. Hence, for any t such that

Xt ̸= 0, a.s. there is T > t such that XT = 0, thus Xt = 0 infinitely often.

Moreover, since {wt}∞t=2 is bounded, it would further follow that a.s. every vertex in

Z is also visited infinitely often. Hence, to show recurrence, it suffices to show that for

any α ≥ 1/2, we can construct the sequence {tk}∞k=1 as above. For our desired property,

one can easily see it is enough to show that

P(Xtk+1
< 0 | Xtk = tk − 1) ≥ β.

Fix any α ≥ 1/2 and let Z ∼ N(0, 1). Let β = P(Z ≤ −3)/2 > 0. We will inductively

construct {tk}∞k=1. Choose t1 = 1. Next, assume that we have successfully determined

tk. We will show how to determine tk+1. For any t > tk, given Xtk = tk − 1, we have

Xt = tk − 1 + Sk,t where Sk,t = ξtk + ξtk+1 + · · ·+ ξt−1. Then,

E[Sk,t] =
t−1∑
j=tk

εj,

Var[Sk,t] = (t− tk)−
t−1∑
j=tk

ε2j .

Since tk is a constant, note that E[Sk,t] ∼ 1
1−α

t1−α and Var[Sk,t] ∼ t. Since Sk,t is a

sum of independent variables and |ξj − εj| ≤ 2 for any j ≥ 1, one can easily see that



CHAPTER 2. TWO ILLUSTRATIVE PROBLEMS 15

Lyapunov’s condition is satisfied for Sk,t, namely

lim
t→∞

∑t−1
j=tk

E|ξj − εj|3

Var[Sk,t]3/2
= 0.

Hence, the central limit theorem (CLT) holds for Sk,t (in this case known as the Lya-

punov CLT) and we have

Yk,t :=
Sk,t − E[Sk,t]√

Var(Sk,t)
→ Z

in distribution as t → ∞.

Next, note that

ak,t :=
−tk − E[Sk,t]√

Var(Sk,t)
→ cα

as t → ∞ where cα = −2 if α = 1/2 and cα = 0 if α > 1/2. Thus, there exists T1 such

that ak,t ≥ −3 for all t ≥ T1. Hence, we have

P(Xt < 0 | Xtk = tk − 1) ≥ P(Sk,t ≤ −tk) = P(Yk,t ≤ ak,t) ≥ P(Yk,t ≤ −3)

for all t ≥ T1. Moreover, since P(Yk,t ≤ −3) → P(Z ≤ −3), there exists T2 such that

P(Xt < 0 | Xtk = tk − 1) ≥ P(Z ≤ −3)/2 for all t ≥ T2. Taking tk+1 = max{T2, tk} gives

our desired construction and we conclude our proof.

Given εt = c/tα, we remark that the results from Proposition 2 hold for any constant

c > 0. In general, one can construct a similar RWCE on any recurrent tree such that

there is always an outward bias that diminishes over time. An interesting open question

is determining the phase transition of such processes, and whether the threshold may

differ among different trees. The above techniques no longer work as Xt is no longer

expressible as a sum of independent Bernoulli variables.



Chapter 3

Main Result

In this chapter, we follow the martingale method discussed in sections 1.1 and 2.1 to

derive a condition for recurrence or transience of bounded RWCEs on general graphs.

The following is our main result.

Theorem 1. Let G = (V,E) be any graph and (G,w0) be recurrent (resp. transient)

where w0 ∈ (0,∞)E is deterministic. Let {⟨Xt, wt⟩}t∈N be any bounded RWCE on G. If

there is C > 0 so that ∑
t,e

|rt(e)− rt+1(e)| ≤ C

almost surely, then {Xt}t∈N is recurrent (resp. transient).

From Rayleigh’s monotonicity principle, one can easily check that if

∑
e∈E

|rt(e)− rt+1(e)| < ∞,

then (G,wt) is recurrent (resp. transient) if and only if (G,wt+1) is recurrent (resp.

transient). Hence, under our condition, all (G,wt) are a.s. recurrent (resp. transient).

Our condition is quite restrictive as we are requiring a double-summation to be bounded.

Nonetheless, the condition includes cases where wt ̸= wt+1 for infinitely many t ∈ N.
Moreover, it holds for any graph G.

Before discussing the proof, we state some corollaries that follow from Theorem 1.

Corollary 1. Let G = (V,E) be any graph and (G,w0) be recurrent (resp. transient)

where w0 ∈ (0,∞)E is deterministic. Let {⟨Xt, wt⟩}t∈N be any bounded RWCE on G

16
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that is also edgewise monotone. If there is C > 0 so that

∑
e∈E

|r0(e)− r∞(e)| ≤ C

almost surely where

r∞(e) := lim
t→∞

rt(e),

then {Xt}t∈N is recurrent (resp. transient).

Proof. This follows immediately from Theorem 1. The edgewise limits a.s. exist since

our condition implies that {rt(e)}t∈N is Cauchy for each e ∈ E. Moreover, note that the

direction of monotonicity can be different for each edge.

If we limit our interest to a deterministic sequence of weights, we can further alleviate

the condition of summing over all edges.

Corollary 2. Let G = (V,E) be any graph of bounded degree. Let {wt}t∈N be a deter-

ministic sequence of weights in (0,∞)E so that wt(e) → w(e) for each e ∈ E and

∑
t∈N

εt < ∞

where εt := supe∈E |rt(e)− r(e)| for each t ∈ N. If (G,w) is recurrent (resp. transient),

then the RWCE {Xt}t∈N is also recurrent (resp. transient).

Proof. Assume that (G,w) is recurrent. We will create an adaptive process that has the

same distribution as {Xt}t∈N. Namely, consider the RWCE {⟨X ′
t, w

′
t⟩}t∈N where X ′

0 = X0

and

w′
t(e) :=

wt(e) e is adjacent to X ′
t,

w(e) e is not adjacent to X ′
t

for each t ∈ N. Since transitions are local, one can easily see that {X ′
t}t∈N = {Xt}t∈N in

distribution. Next, assume X0 = s ∈ V is determined. Then, w′
0 is also deterministic,

and (G,w′
0) is recurrent since it differs from (G,w) finitely. It remains to show that

Theorem 1 is applicable to {⟨X ′
t, w

′
t⟩}t∈N where X ′

0 = s.

First, we show that {w′
t}t∈N is bounded. Fix any e ∈ E. Since εt → 0, there is t′ such

that εt ≤ r(e)/2 for all t ≥ t′. Thus, |rt(e)− r(e)| ≤ εt and r(e)/2 ≤ rt(e) ≤ 3r(e)/2 for
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all t ≥ t′. This shows that inft∈N rt(e) > 0 and supt∈N rt(e) < ∞ for each e ∈ E, thus

{wt}t∈N is bounded. In particular, {w′
t}t∈N is also bounded.

To conclude, note that for any e ∈ E, we have

|r′t(e)− r′t+1(e)| ≤ |r′t(e)− r(e)|+ |r(e)− r′t+1(e)| ≤ εt + εt+1.

Moreover, r′t and r′t+1 differ by at most 2∆ edges where ∆ := supv∈V deg(v). Thus,

∑
e∈E

|r′t(e)− r′t+1(e)| ≤ 2∆(εt + εt+1)

which gives

∑
t,e

|r′t(e)− r′t+1(e)| ≤ 2∆
∑
t∈N

(εt + εt+1) ≤ 4∆
∑
t∈N

εt.

Since the right-most term is a finite constant, we conclude by Theorem 1 that {X ′
t}t∈N

and thus {Xt}t∈N is recurrent. The proof for transience is exactly the same.

3.1 Proof Overview

Here, we give an overview of our proof of Theorem 1. Let {⟨Xt, wt⟩}t∈N be any RWCE on

G = (V,E) satisfying the conditions of Theorem 1. Since {wt}t∈N is bounded, recall that

our RWCE is in particular elliptic. Hence, to show that our RWCE is recurrent (resp.

transient), it suffices to show that some vertex is a.s. visited infinitely (resp. finitely)

often.

Our proof consists of two main parts. First, we show Theorem 1 in the special case

where s has a single neighbor. To do so, we use construct a super/submartingale of

the form {ft(Xt)}t∈N and use the optional stopping theorem as discussed above. In

particular, the construction works on any graph as we consider the maximum/minimum

ratio of vertex-voltages across a single time step. Since s has a single neighbor, for any

v ̸= s, the voltage at v is positive and thus ratios are well-defined.

Next, when s has multiple neighbors, we attach a new vertex s′ to s and construct

a new RWCE whose recurrence or transience implies the recurrence or transience of the

original RWCE. Then, we apply the first part above to this new RWCE by considering
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s′ as the origin of G′. This concludes the proof.

3.2 The Single Neighbor Case

Throughout this section, we assume that the origin s has a single neighbor. We aim to

show the following special case of Theorem 1.

Lemma 1. Let G = (V,E) be any graph and w0 ∈ (0,∞)E be deterministic such that

(G,w0) is recurrent (resp. transient). Assume the origin s ∈ V has a single neighbor

and let {⟨Xt, wt⟩}t∈N be any bounded RWCE on G. If there is C > 0 so that

∑
t,e

|rt(e)− rt+1(e)| ≤ C

almost surely, then {⟨Xt, wt⟩}t∈N is recurrent (resp. transient).

Indeed, choosing the origin is arbitrary and it suffices for a vertex of degree one to

exist. As mentioned above, we will construct a super/submartingale and then apply the

optional stopping theorem to derive a condition for recurrence or transience. Then, we

will show that this condition is satisfied assuming the condition of Lemma 1.

3.2.1 Super/submartingales

We first construct the desired super/submartingale. Assuming that the origin s and the

RWCE {⟨Xt, wt⟩}t∈N are given, we recall some notation involving electrical networks.

For n ≥ 0, let Vn := {v ∈ V : d(s, v) ≤ n} and ∂Vn := {v ∈ V : d(s, v) = n} where d

is the shortest-path distance on G. Let Gn = (Vn, En) denote the subgraph induced in

G by Vn. For n ≥ 1, t ∈ N, and u ∈ Vn, let vn,t(u) denote the (random) voltage of u in

(Gn, wt) when s is grounded and ∂Vn is kept at voltage 1. If u /∈ Vn, define vn,t(u) := 1.

Again, the key connection between random walks on graphs and electrical networks

is that whenever wt is fixed, vn,t(u) equals the probability that the weighted random walk

{Zk}k∈N on (Gn, wt) with Z0 = u ∈ Vn will hit ∂Vn before s. In particular, both quantities

are harmonic, meaning {vn,t(Zk∧θ)}k∈N is a martingale with respect to {Zk}k∈N where

θ := inf{k ∈ N : Zk ∈ {s} ∪ ∂Vn}. In our case, the analogous process for {⟨Xt, wt⟩}t∈N
is {vn,t(Xt∧τ )}t∈N where τ = inf{t ∈ N : Xt ∈ {s} ∪ ∂Vn}. Unfortunately, for arbitrary
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u ∈ Vn the sequence {vn,t(u)}t∈N is not necessarily monotone and thus {vn,t(Xt∧τ )}t∈N
is not a super/submartingale.

To bypass this difficulty, for each t ∈ N we consider the maximum/minimum of the

ratio vn,t+1(u)/vn,t(u) over all u ∈ Vn \ {s}. For n ≥ 1 and t ∈ N, let

αn,t : = max
u∈Vn\{s}

vn,t+1(u)

vn,t(u)
≥ 1,

βn,t : = min
u∈Vn\{s}

vn,t+1(u)

vn,t(u)
≤ 1,

where the inequalities follow by considering u ∈ ∂Vn. Also, the quantities are well-

defined (positive and finite) since s has a single neighbor which gives vn,t > 0 on

Vn \ {s} for all t ∈ N. Finally, recall that τ = inf{t ∈ N : Xt ∈ {s} ∪ ∂Vn} and Ft =

σ(X0, . . . , Xt, w0, . . . , wt) for each t ∈ N. The following is our desired super/submartingale.

Lemma 2. Fix n ≥ 1 and let

At =
vn,t(Xt)∏t−1
k=0 αn,k

, Bt =
vn,t(Xt)∏t−1
k=0 βn,k

for t ∈ N. Then, {At∧τ}t∈N is a supermartingale and {Bt∧τ}t∈N is a submartingale with

respect to {Ft}t∈N.

Proof. It suffices to prove the supermartingale case as the submartingale case is identical.

First, note that

At+1 =
vn,t+1(Xt+1)∏t

k=0 αn,k

≤ vn,t(Xt+1)∏t−1
k=0 αn,k

by construction. Next, if t < τ, we have (t+ 1) ∧ τ = t+ 1 and thus

E[A(t+1)∧τ | Ft] ≤ E

[
vn,t(Xt+1)∏t−1

k=0 αn,k

| Ft

]
=

1∏t−1
k=0 αn,k

E [vn,t(Xt+1) | Ft] = At∧τ .

If t ≥ τ, then

E[A(t+1)∧τ | Ft] = E

[
vn,τ (Xτ )∏τ−1
k=0 αn,k

| Ft

]
=

vn,τ (Xτ )∏τ−1
k=0 αn,k

= At∧τ

as desired and we conclude our proof.
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3.2.2 Optional Stopping Theorem

We now apply the optional stopping theorem to the super/submartingale constructed

above. For the results of this section, we remark that it suffices to assume elliptic-

ity instead of boundedness of the given RWCE. We begin with the supermartingale

{At∧τ}t∈N.

Lemma 3. Let {⟨Xt, wt⟩}t∈N be any elliptic RWCE on G = (V,E) and assume the

origin s ∈ V has a single neighbor. For each n ≥ 1, assume there is an ∈ R such that∏∞
t=0 αn,t ≤ an < ∞ almost surely. If lim supn→∞ an < ∞ and vn,t(u) → 0 almost surely

as n → ∞ for any t ∈ N and u ∈ V, then {⟨Xt, wt⟩}t∈N is recurrent.

Proof. By ellipticity, it suffices to show that s is a.s. visited infinitely often. Since

αn,t ≥ 1, note that the conditions of the lemma hold for any subprocess {⟨Xt, wt⟩}t≥t′

where t′ > 0. Hence, it suffices to show that Xt = s for some t ∈ N assuming X0 = u ̸= s.

Fix some n ≥ 1 and recall the supermartingle {At∧τ}t∈N from Lemma 2. Since |At∧τ | ≤ 1

for all t ∈ N, the optional stopping theorem gives E[Aτ ] ≤ E[A0]. Hence,

E[vn,0(X0)] ≥ E

[
vn,τ (Xτ )∏τ−1
t=0 αn,τ

]
≥ P(Xτ ∈ ∂Vn)

an

which can be rearranged as P(Xτ ∈ ∂Vn) ≤ an · vn,0(u). Taking the limit superior on

both sides of the inequality gives our desired result.

Next, we proceed similarly with the submartingale {Bt∧τ}t∈N.

Lemma 4. Let {⟨Xt, wt⟩}t∈N be any elliptic RWCE on G = (V,E) and assume the

origin s ∈ V has a single neighbor x. For each n ≥ 1, assume there is bn ∈ R such that

a.s.
∏∞

t=0 βn,t ≥ bn > 0. If lim infn→∞ bn > 0 and infn,t vn,t(x) > 0, then {⟨Xt, wt⟩}t∈N
is transient.

Proof. By ellipticity, it suffices to show that s is a.s. visited finitely often. We will show

that given Xt = x, assuming P(Xt = x) > 0, the probability of never returning to s

again is at least some positive constant independent of t. This suffices since whenever

the process visits s, it must visit x the next step.

First consider when X0 = x. Fix some n ≥ 1 and recall the submartingale {Bt∧τ}t∈N
from Lemma 2. Since |Bt∧τ | ≤ 1/bn < ∞, the optional stopping theorem gives E[Bτ ] ≥



CHAPTER 3. MAIN RESULT 22

E[B0]. Hence,

E[vn,0(X0)] ≤ E

[
vn,τ (Xτ )∏τ−1

t=0 βn,τ

]
≤ P[Xτ ∈ ∂Vn]

bn

which can be rearranged as P[Xτ ∈ ∂Vn] ≥ bn · vn,0(x) ≥ bn · infn,t vn,t(x). Taking the

limit inferior on both sides as n → ∞, we get P[never return to s again | X0 = x] ≥ K

for some K > 0.

When Xt = x, we can construct a submartingale similar to Bt∧τ by viewing Xt as

the initial vertex and (G,wt) as the initial graph. Since βn,t ≤ 1, the same method gives

P[never return to s again | Xt = x] ≥ K as desired and we conclude our proof.

3.2.3 Bounding Voltage-Ratios

Having Lemma 3 and 4, we want to use these results to prove Lemma 1. For this

purpose, we estimate αn,t and βn,t by deriving an upper bound for |vn,t+1(u)/vn,t(u)− 1|.
We begin with the following expression for |vn,t+1(u)− vn,t(u)|.

Lemma 5. For any n ≥ 1, t ∈ N, and u ∈ Vn−1 \ {s} we have

vn,t+1(u)− vn,t(u) =
1

Rn,t(s, ∂Vn)

∑
e={x,y}∈En

(rt(e)− rt+1(e)) · in,t+1
u,{s}∪∂Vn

(x, y) · in,ts,∂Vn
(x, y)

where Rn,t(a, b) is the effective resistance between vertices a, b in (Gn, wt). Also, in,tv,S

is the unit current in (Gn, wt) from v (which is grounded) to S ⊆ Vn \ {v}. Finally,

in,tv,S(x, y) is the amount of the current in,tv,S across {x, y} from x to y.

Proof. Note that all random variables in the claim are determined given wt and wt+1.

The key idea is to represent vn,t+1(u) in terms of the current i1 := in,t+1
u,s∪∂Vn

. Namely, we

claim that

vn,t+1(u) =
∑
y∈∂Vn

∑
x∈Vn

i1(x, y). (3.1)

In words, the right-hand side of (3.1) is the total amount of current in i1 that flows

into ∂Vn. Recall that the probabilistic interpretation of i1(x, y) is given by the weighted

random walk on (Gn, wt+1) that begins at u and runs until hitting s ∪ ∂Vn. Namely,
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i1(x, y) equals the expected net number of crossings of {x, y} in the given direction

during the random walk. In particular, it is zero if x ≁ y. Taking x ∼ y as specified in

the summation above, if x ∈ s∪ ∂Vn we also have i1(x, y) = 0 as {x, y} is never crossed.

Otherwise, if x ∈ Vn−1 \{s}, we can cross {x, y} exactly once during the random walk as

it will terminate after crossing. Hence, i1(x, y) equals the probability that the random

walk terminates after crossing {x, y}. It follows that the right-hand side of (3.1) is simply

the probability that the weighted random walk on (Gn, wt+1) beginning at u will hit ∂Vn

before s. By the probabilistic interpretation of voltage, this is exactly vn,t+1(u).

The rest of our proof is routine algebra of flows, which we explain below. First, by

Kirchhoff’s current law we extend (3.1) to get

vn,t+1(u)− vn,t(u) =
∑
y∈Vn

vn,t(y)
∑
x∈Vn

i1(x, y).

As current is antisymmetric, we further obtain

vn,t+1(u)− vn,t(u) =
1

2

∑
x,y∈Vn

(vn,t(y)− vn,t(x)) · i1(x, y)

=
1

Rn,t(s, ∂Vn)

∑
e={x,y}∈En

rt(e) · i0(x, y) · i1(x, y)

where i0 := in,ts,∂Vn
and the second equality is by Ohm’s law [10].

To conclude, it suffices to show that

L :=
∑

e={x,y}∈En

rt+1(e) · i1(x, y) · i0(x, y) = 0.

We evaluate L by essentially reversing the above process. Let ϕ(x) denote the voltage

of x ∈ Vn induced by i1. Then, by Ohm’s law we have

L =
∑

e={x,y}∈En

(ϕ(y)− ϕ(x)) · i0(x, y)

=
1

2

∑
x,y∈Vn

(ϕ(y)− ϕ(x)) · i0(x, y)

=
∑
y∈Vn

ϕ(y)
∑
x∈Vn

i0(x, y)
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where the second and third equalities follow since current is antisymmetric. By Kir-

choff’s current law, we can simplify further to obtain

L = ϕ(s)
∑
x∈Vn

i0(x, s) +
∑
y∈∂Vn

ϕ(y)
∑
x∈Vn

i0(x, y).

Note that ϕ(y) = ϕ(s) for any y ∈ ∂Vn and i0 is a unit flow. Hence, we get L =

−ϕ(s) + ϕ(s) = 0 as desired and conclude our proof.

We now crucially use the assumption that s has a single neighbor to get the following

corollary.

Corollary 3. Assume that s has a single neighbor x. Then, for any n ≥ 1, t ∈ N, and
u ∈ Vn \ {s}, we have∣∣∣∣vn,t+1(u)

vn,t(u)
− 1

∣∣∣∣ ≤ wt(s, x)
∑
e∈E

|rt(e)− rt+1(e)|.

Proof. Since the right-hand side of Lemma 4 involves unit currents, taking absolute

values gives

|vn,t+1(u)− vn,t(u)| ≤
1

Rn,t(s, ∂Vn)

∑
e∈E

|rt(e)− rt+1(e)|.

Moreover, the inequality trivially holds for u ∈ ∂Vn. Finally, since s has a single neighbor

x, we see that vn,t(u) ≥ vn,t(x) = rt(s, x)/Rn,t(s, ∂Vn). Combining the two inequalities

gives our desired result.

3.2.4 Proof of the Single Neighbor Case

We are now ready to prove Lemma 1.

Showing Recurrence

We begin with the recurrent case.

Proof of Lemma 1 (Recurrence). We aim to use Lemma 3. First, we check that for any

t ∈ N and u ∈ Vn, we have vn,t(u) → 0 almost surely as n → ∞. Let d(s, u) = ℓ and
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(x0, . . . , xℓ) be a path from s to u. Then, for n > ℓ we have

vn,t(u) =
1

Rn,t(s, ∂Vn)

ℓ−1∑
k=0

in,ts,∂Vn
(xk, xk+1)rt(xk, xk+1 ≤

1

Rn,t(s, ∂Vn)

ℓ−1∑
k=0

rt(xk, xk+1).

Next, by the boundedness condition there exists C1 > 0 such that
∑

e δe ≤ C1 almost

surely where δe :=
∑∞

t=0 |rt(e)−rt+1(e)| for e ∈ E. Hence, it follows that |r0(e)−rt(e)| ≤
δe ≤ C1 and thus rt(e) ≤ r0(e) + C1. Since r0 is deterministic,

∑ℓ−1
k=0 rt(xk, xk+1) is

bounded and it suffices to show that a.s. Rn,t(s, ∂Vn) → ∞ as n → ∞. Let i := in,ts,∂Vn
.

Then, by Thomson’s principle, we a.s. have

Rn,0(s, ∂Vn) ≤
∑
e∈En

i2(e)r0(e) ≤
∑
e∈En

i2(e)(rt(e) + δe) ≤ Rn,t(s, ∂Vn) + C1.

Since (G,w0) is recurrent, it follows that a.s.Rn,t(s, ∂Vn) → ∞ for each t ∈ N as desired.

Next, we show that the condition on αn,t holds. With the crucial assumption that

the RWCE is bounded, there exists C2 > 0 such that wt(s, x) ≤ C2 where x is the unique

neighbor of s. By Corollary 3, we get

∞∏
t=0

αn,t ≤
∞∏
t=0

(
1 +

∑
e∈E

wt(s, x)|rt(e)− rt+1(e)|

)

≤ exp

(∑
t,e

wt(s, x)|rt(e)− rt+1(e)|

)
≤ eC1C2 .

Therefore, we can choose an = eC1C2 in Lemma 2 for each n ≥ 1. This concludes our

proof.

Showing Transience

By similar methods, we next prove the transient case.

Proof of Lemma 1 (Transience). We aim to use Lemma 4. We first check that

inf
n,t

vn,t(x) > 0.

Since x is the unique neighbor of s, recall that vn,t(x) = rt(s, x)/Rn,t(s, ∂Vn) for n ≥ 1.

Also, by the boundedness condition, there exists C1 > 0 such that a.s. |r0(e)− rt(e)| ≤
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δe ≤ C1 where δe :=
∑∞

t=0 |rt(e)−rt+1(e)|. Letting i := in,0s,∂Vn
, Thomson’s principle gives

Rn,t(s, ∂Vn) ≤
∑
e∈En

i2(e)rt(e) ≤
∑
e∈En

i2(e)(r0(e) + δe) ≤ Rn,0(s, ∂Vn) + C1.

Moreover, as the RWCE is bounded, there exists C2 > 0 such that wt(s, x) ≤ C2 for all

t ∈ N. Hence,

vn,t(x) ≥
1/C2

Rn,0(s, ∂Vn) + C1

≥ 1/C2

lim
n→∞

Rn,0(s, ∂Vn) + C1

since Rn,0(s, ∂Vn) is increasing in n. As (G,w0) is transient, we conclude that

inf
n,t

vn,t(x) > 0

as desired.

Next, we show that the condition on βn,t holds. Note that

βn,t ≥ vn,t+1(x) ≥ inf
n,t

vn,t(x)

for any n ≥ 1 and t ∈ N. Moreover, let S := {t ∈ N : σt > 1/(2C2)} where σt =∑
e∈E |rt(e) − rt+1(e)|. Since

∑∞
t=0 σt ≤ C1 a.s., it follows that |S| ≤ 2C1C2 almost

surely. Beginning with Corollary 3, we have

∞∏
t=0

βn,t ≥
∏
t∈S

βn,t ·
∏
t/∈S

(1− C2σt) ≥
∏
t∈S

βn,t · exp

(
−
∑
t/∈S

C2σt

1− C2σt

)
.

Since 1/(1− C2σt) ≤ 2 if t /∈ S, we conclude that a.s.

∞∏
t=0

βn,t ≥
(
inf
n,t

vn,t(x)

)⌈2C1C2⌉

exp

(
−2C2

∑
t/∈S

σt

)
≥
(
inf
n,t

vn,t(x)

)⌈2C1C2⌉

e−2C1C2 .

Choosing the final value as bn in Lemma 3 for all n ≥ 1, we conclude our proof.
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3.3 The Multiple Neighbor Case

We now consider the general case where the origin s has multiple neighbors. As men-

tioned in section 2.1, the idea is to attach a new vertex s′ to s and construct a new

RWCE on the new graph.

3.3.1 Desired Properties

Here, we describe the desired properties of the new RWCE. Recall that s is the origin of

G and {⟨Xt, wt⟩}t∈N is a bounded RWCE on G that satisfies the boundedness condition.

Also, w0 is deterministic. First attach a vertex s′ to s to get G′ = (V ′, E ′) where

V ′ = V ∪ {s′} and E ′ = E ∪ {s, s′}. We aim to construct a new bounded RWCE

{⟨X ′
t, w

′
t⟩}t∈N on G′ whose recurrence (resp. transience) implies the recurrence (resp.

transience) of {⟨Xt, wt⟩}t∈N. Then, viewing s′ as the origin of G′, we can apply Lemma

1 to {⟨X ′
t, w

′
t⟩}t∈N if it also satisfies the boundedness condition.

Note that the restriction of {⟨X ′
t, w

′
t⟩}t∈N to G induces a natural RWCE on G. If

this induced RWCE is equal in distribution to {⟨Xt, wt⟩}t∈N, we claim that we have our

desired implication of recurrence or transience. More concretely, let Nt be the number

of edges in E traversed by (X ′
0, . . . , X

′
t) for each t ∈ N. Also define stopping times

τk = inf{t ∈ N : Nt = k} for k ∈ N. Then, we say the RWCE induced by {⟨X ′
t, w

′
t⟩}t∈N

on G is {⟨Yk, ωk}k∈N where Yk = X ′
τk

and ωk = w′
τk

↾E for each k ∈ N. In particular, the

vertex sequence {Yk}k∈N simply tracks the edges in E crossed by {X ′
t}t∈N.

We now explain how the desired implications follow if {⟨X ′
t, w

′
t⟩}t∈N is bounded and

{⟨Yk, ωk⟩}k∈N equals {⟨Xt, wt⟩}t∈N in distribution. First consider when {⟨X ′
t, w

′
t⟩}t∈N

is recurrent and thus a.s. visits s′ infinitely often. If s is visited finitely often in

{⟨Yk, ωk⟩}k∈N, then the only way s′ can be visited infinitely often in {⟨X ′
t, w

′
t⟩}t∈N is

by alternating between s and s′ infinitely many times in a row. However, this happens

with probability zero as {⟨X ′
t, w

′
t⟩}t∈N is bounded and the probability of jumping from

s to s′ is bounded above by some number less than 1. Hence, s is a.s. visited infinitely

often in {⟨Yk, ωk⟩}k∈N which implies recurrence of {⟨Xt, wt⟩}t∈N. Next, assume that

{⟨X ′
t, w

′
t⟩}t∈N is transient and thus a.s visits s finitely often. Since we only remove ver-

tices when obtaining {Yk}k∈N from {X ′
t}t∈N, it follows that s is a.s. visited finitely often

in {⟨Yk, ωk⟩}k∈N which implies transience of {⟨Xt, wt⟩}t∈N.
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3.3.2 Formal Construction

Here, we construct our desired {⟨X ′
t, w

′
t⟩}t∈N. We determine the random variables se-

quentially, beginning with X ′
0, then w′

0, then X ′
1, then w′

1, and so on. The key idea is to

determine w′
t as if we were determining wNt given (Y0, Y1, . . . , YNt , ω0, . . . , ωNt−1) as the

history. If {X ′
t−1, X

′
t} = {s, s′}, however, then Nt = Nt−1 and in this case we freeze the

weights by letting w′
t = w′

t−1. Indeed, we unfreeze afterwards as soon as an edge in E is

crossed.

For notational simplicity, let WE := (0,∞)E and w′
t,E := w′

t ↾E for any w′
t ∈ WE′

.

We now give the measure-theoretic construction of {⟨X ′
t, w

′
t⟩}t∈N. Let X ′

0 = X0 in

distribution and let w′
0 ↾E= w0. Also let w′

t(s, s
′) = 1 for all t ∈ N. Then, it remains to

define the conditional probabilities P(w′
t+1,E ∈ A | G ′

t) for each t ∈ N and A ∈ B(WE)

where G ′
t := σ(X ′

0, . . . , X
′
t+1, w

′
0, . . . , w

′
t). In this process, we will involve standard notions

from probability theory such as regular conditional probabililty distributions (RCPD),

Polish spaces and the Doob-Dynkin functional representation, and extension theorems

(Kolmogorov, Carathéodory). We include [3, 7, 11] as a reference for these notions.

Let (Ω,F ,P) denote the underlying probability space and P̂wt+1|Gt(·, ·) : B(WE) ×
Ω → [0, 1] denote the RCPD of wt+1 given Gt := σ(X0, . . . , Xt+1, w0, . . . , wt) for t ∈ N.
The RCPD exists since E is countable and WE is a Polish space. By the Doob-Dynkin

functional representation, we have

P̂wt+1|Gt(A, ω) = ft,A(X0(ω), . . . , Xt+1(ω), w0(ω), . . . , wt(ω))

for any A ∈ B(WE) and ω ∈ Ω where ft,A : V t+2 × (WE)
t+1 → [0, 1] is some measurable

function. Moreover, we know that ft,·(X0, . . . , Xt+1, w0, . . . , wt) is a.s. a probability

measure on (WE,B(WE)).

To conclude, when Nt+1 = Nt + 1, we require

P(w′
t+1,E ∈ A | G ′

t) = fNt,A(Y0, . . . , YNt+1, ω0, . . . , ωNt). (3.2)

Otherwise, if Nt+1 = Nt, then given G ′
t we require w′

t+1 = w′
t. Note that if we know

(X0, . . . , Xt, w0, . . . , wt−1)
d
=(Y0, . . . , Yt, ω0, . . . , ωt−1)

for t ≤ k + 1, then (3.2) is a well-defined probability for t ≤ τk+1 − 1. We will show
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this equality in distribution while proving {⟨Xt, wt⟩}t∈N
d
= {⟨Yt, ωt⟩}t∈N in the following

section.

3.3.3 Verifying the Construction

Here, we justify our construction through the following lemma.

Lemma 6. We have {⟨Xt, wt⟩}t∈N
d
= {⟨Yt, ωt⟩}t∈N. In particular, (3.2) is well-defined

for all t ∈ N.

Proof. By Kolmogorov’s extension theorem for Polish spaces, it suffices to show that

(X0, w0, . . . , Xt−1, wt−1, Xt)
d
=(Y0, ω0, . . . , Yt−1, ωt−1, Yt), (3.3)

(X0, w0, . . . , Xt−1, wt−1, Xt, wt)
d
=(Y0, ω0, . . . , Yt−1, ωt−1, Yt, ωt) (3.4)

for each t ∈ N. We proceed by strong induction on t ∈ N. If t = 0, both claims follow

since τ0 = 0. Next, assume that both claims hold for all t ≤ k where k ∈ N. We first

show that (3) also holds for t = k+1. By Carathéodory’s extension theorem, it suffices

to show that

P
(
{Xi = xi}k+1

i=0 , {wj ∈ Ej}kj=0

)
= P

(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}kj=0

)
for any x0, . . . , xk+1 ∈ V and E0, . . . , Et ∈ B(WE). Beginning with the right-hand side,

we have

P
(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}kj=0

)
= E

[
k+1∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej

]

= E

[
k∏

i=0

1Yi=xi

k∏
j=0

1ωj∈Ej
E
[
1Yk+1=xk+1

| F ′
τk

]]

where F ′
k = σ(X ′

0, . . . , X
′
t, w

′
0, . . . , w

′
k). If Yk ̸= s, then we have E

[
1Yk+1=xk+1

| F ′
τk

]
=

ωk(Yk, xk+1)/ωk(Yk). Otherwise, if Yk = s, then we have

E
[
1Yk+1=xk+1

| F ′
τk

]
=

∞∑
k=0

1

(ωk(s) + 1)k
· ωk(s, xk+1)

ωk(s) + 1
=

ωk(s, xk+1)

ωk(s)
.
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Hence, we can write

P
(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}kj=0

)
= E[gk(Y0, . . . , Yk, ω0, . . . , ωk)]

where

gk(Y0, . . . , Yk, ω0, . . . , ωk) =
ωk(Yk, xk+1)

ωk(Yk)
·

k∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej
.

By the inductive hypothesis, we have

E[gk(Y0, . . . , Yk, ω0, . . . , ωk)] = E[gk(X0, . . . , Xk, w0, . . . , wk)].

Working backwards, we see that

E[gk(X0, . . . , Xk, w0, . . . , wk)] = P
(
{Xi = xi}k+1

i=0 , {wj ∈ Ej}kj=0

)
.

This gives (3) for t ≤ k + 1. It follows that (3.2) is well-defined for t ≤ τk+1 − 1.

Next, we show that (4) also holds for t = k + 1. Again, it suffices to show that

P
(
{Xi = xi}k+1

i=0 , {wj ∈ Ej}k+1
j=0

)
= P

(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}k+1
j=0

)
for any x0, . . . , xk+1 ∈ V and E0, . . . , Ek+1 ∈ B(WE). Beginning with the right-hand

side, we have

P
(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}k+1
j=0

)
= E

[
k+1∏
i=0

1Yi=xi

k+1∏
j=0

1ωj∈Ej

]

= E

[
k+1∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej
E
[
1ωk+1∈Ak+1

| G ′
τk+1−1

]]
.

Since (3.2) is well-defined for t ≤ τk+1 − 1, we have

E[1ωk+1∈Ek+1
| G ′

τk+1−1] = fk,Ek+1
(Y0, . . . , Yk+1, ω0, . . . , ωk).

Hence, we can write

P
(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}k+1
j=0

)
= E[hk(Y0, . . . , Yk+1, ω0, . . . , ωk)]
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where

hk(Y0, . . . , Yk+1, ω0, . . . , ωt) = fk,Ek+1
(Y0, . . . , Yk+1, ω0, . . . , ωk) ·

k+1∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej
.

Since (3) holds for t = k + 1, we have

E[hk(Y0, . . . , Yk+1, ω0, . . . , ωk)] = E[hk(X0, . . . , Xk+1, w0, . . . , wk)].

Working backwards, we see that

E[hk(X0, . . . , Xk+1, w0, . . . , wk)] = P
(
{Xi = xi}k+1

i=0 , {wj ∈ Ej}k+1
j=0

)
.

This gives (4) for t ≤ k + 1. By induction, we conclude our proof.

3.3.4 Proof of Main Result

We are now ready to prove Theorem 1 in full generality.

Proof of Theorem 1. We aim to use Lemma 1. We will check the necessary conditions

for G′ and {⟨X ′
t, w

′
t⟩}t∈N constructed above. First, choose s′ as the origin of G′. Then,

s′ has a single neighbor s and w′
0 is deterministic. Since wt(s, s

′) = 1 for all t ∈ N,
combining this with Lemma 6 it follows that {⟨X ′

t, w
′
t⟩}t∈N is bounded. Finally, since

the weights are frozen when {⟨X ′
t, w

′
t⟩}t∈N traverses along {s, s′}, it follows that

∑
t,e

|r′t(e)− r′t+1(e)|
a.s.
=
∑
k,e

|r′τk(e)− r′τk+1
(e)| d

=
∑
k,e

|rk(e)− rk+1(e)|

where the second equality is by Lemma 6. Hence,
∑

t,e |r′t(e)− r′t+1(e)| is also bounded.

To conclude, by Lemma 1, we see that {⟨X ′
t, w

′
t⟩}t∈N inherits the recurrence or transience

of (G′, w′
0). Moreover, note that

R′(s′, ∂V ′
n+1) = 1 +R(s, ∂Vn)

where R′ is the effective resistance function on (G′, w′
0) with s′ as the origin and R

is the effective resistance function on (G,w0) with s as the origin. Hence, it follows

that (G,w0) and (G′, w′
0) are either both recurrent or both transient. To conclude, if
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(G,w0) is recurrent, it follows that (G
′, w′

0), then {⟨X ′
t, w

′
t⟩}t∈N, then {⟨Xt, wt⟩}t∈N are

also recurrent where the last implication was discussed in section 4.1. The case is the

same for transience and we conclude our proof.



Chapter 4

Concluding Remarks

We conclude by discussing insight from our attempts and results along with possible

future work.

First, we discuss the martingale method for showing recurrence or transience. In

order to tackle the monotone-bounded problem using this method, we remark that one

must construct a super/submartingale that only works when the RWCE is nonadaptive.

For instance, one could construct a supermartingale that uses information about all

weights {wt}∞t=0 in advance, which would not be well-defined if the RWCE is adaptive.

Moreover, it could also be possible that the constructed function only has the mar-

tingale property when the RWCE is nonadaptive. In either case, we remark that one

must crucially exploit the fact that the RWCE is nonadaptive when constructing the

supermartingale. Of course, this was not exploited in our construction (section 3.2.1)

or in the construction of Amir et al. in [2].

Moreover, it would be nice if one could improve the double summation in our main

result by changing the summation over e ∈ E into a supremum over e ∈ E. One place

in our proof that can be greatly improved is our usage of Lemma 5. Here, we used the

very rough estimate of bounding the unit flows by one, but in theory one could aim to

bound the voltage differences much more accurately. This may help in improving upon

our main result.

Finally, we discuss the case of RWCEs with deterministic weights uniformly con-

verging to a recurrent graph. In this direction, it would be interesting to improve upon

Corollary 2 by investigating the slowest rate of convergence that is still able to guaran-

tee recurrence: Recall that in Corollary 2, we showed
∑

t∈N εt < ∞ is sufficient, but εt

33
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that decay even slower should also be able to guarantee recurrence on general graphs.

Moreover, it would be nice to remove the assumption on bounded degree that we make

in Corollary 2.

The final problem in this direction is determining the location of the phase-transition

for the outward-biased RWCE on trees we discussed at the end of section 2.2. Given

biases of εt = 1/tα, it was shown in [14] that α = 1/2 is the threshold for G = N. In

a sense, note that N is the “least” transient infinite graph since there is only one path

to infinity. Even in this graph, any α < 1/2 creates a bias too strong that makes the

RWCE transient. Considering general recurrent trees, these are now more “transient”

than N since there are more paths to infinity. Hence, it is not obvious if the threshold

for recurrence will also be at α = 1/2, or whether it would be at a value strictly larger

than 1/2. Answering this for general trees would require a completely different approach

compared to our usage of the central limit theorem in section 2.2.
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