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Chapter 1

Introduction

1.1 Overview

Consider any simple, undirected, connected, and locally-finite! graph G = (V, E). There
are several random processes on GG that are of interest, but perhaps the most classical
and fundamental process is the simple random walk (SRW) on G. Namely, the SRW
on G is the stochastic process { X}, such that for any ¢t € N:= {0,1,2,...}, we have

XtEVand 1

~ deg(z)

IP)(Xt+1 =Y | X =)

for all {z,y} € E. In words, at each timestep the process transitions to any neigh-
boring vertex with equal probability. Of course, the distribution of X, (or the initial
distribution) may be arbitrary.

Since G is connected and locally-finite, V' is countable, and let us assume that V is
infinite. Then, it is natural to ask whether it is possible for the SRW to get “lost” in
the graph . This is captured by notions of recurrence and transience, which are basic

questions regarding SRWs.

Definition 1 (Recurrence and Transience). Consider the return probability
p = P(There is T > 0 such that X = Xj).

Then, {X;}2, is recurrent if p = 1 and transient if p < 1.

IThis means that every vertex has finite degree.
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Since {X;}:°, is an irreducible, time-homogeneous Markov chain, one can easily
check that {X;}7°, is either recurrent for any initial distribution or transient for any
initial distribution. Hence, it is well-defined to say that G is recurrent (resp. transient)
if {X:}9°, is recurrent (resp. transient). Moreover, since the transition probabilities are
fixed over time, we see that recurrence (resp. transience) implies that a.s. X is visited
infinitely (resp. finitely) often. In fact, since G is connected, it follows that a.s. every
v € V is visited infinitely (resp. finitely) often: For any x,y € V, the probability of
the process eventually visiting y from z is at least some positive constant p,, which is
independent of time.

The pioneering result in this area that comes with an initial surprise is Pélya’s
recurrence theorem [15], which states that the SRW on Z¢ is recurrent if d € {1,2}
and transient if d > 3. An elementary proof can be given by counting the number of
paths that return to the origin after 2n steps. Indeed, this relies on the fact that Z?
is bipartite and space-homogeneous. One may wonder if there is a general theory to
determine whether GG is recurrent or transient: It turns out there is a nice connection
with electrical network theory that becomes more natural once we slightly generalize
our setup. We discuss the generalization below.

Equip G with any weight function w : £ — (0,00). Then, one can consider the
random walk {X;}2°, on the weighted graph (G, w), where transition probabilities are

now proportional to edge-weights. Namely, for any t € N, we have

w(z,y)

P(Xm:y!Xt:x):m
yz DA

for all y ~ x (which means {z,y} € E). Since {X;}2, is still a time-homogeneous
Markov chain on V; all discussions above regarding recurrence or transience also hold in
the weighted case. In particular, it is again well-defined to say that (G, w) is recurrent
or transient. Roughly speaking, the connection with electrical network theory begins
by viewing (G,w) as an electrical network, where each e € E is a resistor that has
conductance w(e). We will further review this connection in section 1.2 below.

The main mathematical object of this paper is a further generalization of weighted
random walks, where we remove the assumption of time-homogeneity. For instance, one
can imagine how the conductance of an actual resistor could physically change over time.

We make this generalization by assuming that at each time t € N, the weight function on
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G is given by a random variable w;. Such processes are generally known as random walks
in changing environments (RWCE). Again, the basic question of interest is recurrence
or transience, but the various implications that were true in the time-homogeneous case
may no longer coincide for general RWCEs. Hence, one needs more care in making the
question concrete. We will formally discuss RWCEs in section 1.3.

A complete theory for recurrence or transience of RWCEs is far out of reach compared
to the time-homogeneous case. Current main questions revolve around finding natural,
general conditions on {w;}:°, that guarantee recurrence or transience of the RWCE. In
chapter 2, we will illustrate some techniques that are used to show the recurrence or
transience of RWCEs. In section 2.1, we focus on monotone bounded RWCEs, which
include open problems that are currently of most interest [2]. Here, the main proof idea
is to construct a super/submartingale involving voltages on the electrical network G' and
then use the optional stopping theorem to bound the probability of return. In section
2.2, we consider a non-monotone RWCE on Z with uniformly converging weights. In
this special case, we show that the Lyapunov central limit theorem is enough to prove a
phase transition previously observed by [14] which depends on the rate of convergence
of the weights.

To conclude, in chapter 3, we present our main result which is also the novel con-
tribution of this thesis. Namely, we explore the limits of the martingale approach from
section 2.1 and derive a condition for recurrence or transience that holds for any graph
G. This can be viewed as an attempt to overcome the fact that the voltage sequence,
which is a natural martingale on a single weighted graph, is no longer as nice on a

sequence of weighted graphs (or in changing environments).

1.2 Electrical Network Theory

In this section, we recall important results on the characterization of recurrence or
transience given by electrical network theory. The first chapter of [10] provides a nice
introduction with detailed proofs for the interested reader. Further standard references
include [1, 9, 13].

We begin with some notation. Fix any G = (V, E) with the usual assumptions and
take any w : E — (0,00). Fix any s € V, which we consider as the origin of G. For
n>0,let V, :={veV:d(s,v) <n}and 9V, :={v € V : d(s,v) = n} where d is the
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shortest-path distance on G. Finally, let {X;}?°, denote the weighted random walk on
(G,w) and 7, denote the first time ¢ € N such that X; € 9V,,.
Then, the return probability from (and to) s € V, say p, satisfies

Z%Pu(m <T)—>1-—p

u~'s

as n — oo where w(s) := ) _ w(s,u) and P, is the probability measure assuming
Xo = u. Note that P,(7, < 79) only depends on the finite subgraph of G induced by
V., which we denote as G,, = (V,,, E,,). The key observation of electrical network theory
is the fact that P,(7, < 7o) equals the voltage of u, say v(u), when viewing (G, w) as
an electrical network with s as the source and 0V, as the sink so that v(x) =1 for any
x € JV,,. This follows from the fact that both v(-) and P.(7, < 7y) are harmonic on
Vo \ ({s} U0OV,) with equal boundary conditions (see [10] for further details).

We now elaborate further on the basic theory of finite electrical networks. For this
part alone, let G = (V, E) be finite with weights w : F — (0,00). Fix s € V as the
source and t € V' \ {s} as the sink. The central objects of electrical network theory are

s/t flows which are defined below.

Definition 2 (s/t flows). We say thati: V? — [0,00) is an s/t flow if

i(u,v) = —i(v,u),
i(u,v) =0 if {u,v} ¢ E,
Jy = Zz’(u,v) =0 for any u ¢ {s,t}.

One can check that J; = —J;, and we define |i| := |J,| as the size of the flow i. We

say that i is a unit flow if |i| = 1. Moreover, we assign an energy to the flow ¢, given by

eeE

where 7(e) := 1/w(e) is the resistance of e € E. Similarly, w(e) can be thought as the
conductance of edge e.
Among all possible unit s/t flows on (G, w), there is a unique flow ¢ which obtains

the minimum possible energy. We call ¢ the Kirchoff flow, as 7 is exactly the unique flow



CHAPTER 1. INTRODUCTION )

that satisfies the Kirchoff potential law: Namely, we have

n
Y (05, v41)r (07, v541) = 0
j=1
for any cycle vy, v9,...,0,, 0,11 = v1. The Kirchoff flow is nice as it induces a voltage

function v : V' — [0, 00) where v(s) = 0 and

n

v(u) ==Y i(vj, v541)r (), v511)

=1

for any path (s = vy, v9,...,0,01 = u) from s to u. We remark that this is only well-
defined when 17 is a Kirchoff flow.

The energy of the Kirchoff flow ¢ also gets a special name, and we say that

R(st) =Y _i*(e)r(e)
c€E

is the effective resistance between s and ¢ in (G, w). As mentioned above, the effective
resistance equals the minimum possible energy among all unit flows, and this is known as
Thomson’s principle. Intuitively, the network (G, w) can be reduced to a single resistor
between s and t with resistance R(s,t). Also, we remark that the voltage at ¢ induced
by ¢ will exactly equal R(s,t). Hence, to get v(t) = 1, one should rescale the flow i so
that |i| = 1/R(s, ).

We are now ready to describe the connection between recurrence or transience and
electrical network theory. Let R, denote the effective resistance between s and 0V, in
(G, w). Indeed, JV,, may not be a single vertex, and in this case we identify all vertices in
dV,, into a single vertex while removing any self-loops that occur. An extremely useful
property of effective resistance is given by Rayleigh’s monotonicity principle, which
states that the effective resistance of a network can only increase if we only increase
edge-resistances. It follows that {R, }°°, is increasing, hence the limit R := lim,,_,o, R,

always exists. The amazing result of the theory determines the return probability p as

In particular, the random walk on (G, w) is recurrent if and only if R = oc.
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1.3 Random Walk in Changing Environments

Here, we formally introduce our main object of study. Let (€2, F,P) denote the under-

lying probability space.

Definition 3 (RWCE). A random walk in changing environment (RWCE) on a graph
G = (V, E) is a stochastic process {(X;, w;) }en such that for any y € V, we have

wt(Xt7 y)
ZZNXt wt(Xt7 Z)

P(Xip =y [ Fi) =

where X; : Q@ — V, wy : Q — (0,00)%, and F; = o(Xo, ..., Xs, wo, ..., w;) for each
t e N.

In words, at time ¢ € N, the RWCE traverses a neighboring edge from X; with prob-
ability proportional to its weight, which is given by the realization of w;. By requiring
the edge-weights to be positive, we are only considering proper RWCEs. Moreover, for
any {x,y} ¢ E, we write w;(z,y) = 0 by convention.

While the term RWCE was coined by Amir et al. in [2], it includes the large class
of self-interacting walks which were studied even before. A well-known example is the
linearly edge-reinforced random walk by Coppersmith and Diaconis [5] from the eighties.
Other examples include the once-reinforced random walk [6] or the “true” self-avoiding
walk with bond repulsion [16].

As aforementioned in our discussion in section 1.1, we need to be more careful
when discussing recurrence or transience of general RWCEs. This is because the return
probability may change over time, and it is also not obvious whether infinite visits
to a single vertex implies infinite visits to every vertex. We give a simple example
below that shows how different time-inhomogeneous processes can be compared to time-

hOHlOgGHQOU.S ones.

Example 1. Let G = (V, E) where V = {a,b,c} and E = {{a,b}, {b,c}}. Let Xy = a
and take {w;}%, where wy(a,b) = 1 and w(b,c) = (t + 1)? for each ¢ > 0. Finally,
let {(X;, wi)hen denote the resulting RWCE on G. Of course, each w; is actually
deterministic in this case.

For each ¢ > 0, consider the event A; = {Xo;10 = a}. Since X911 = b holds for any
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t > 0, we see that

= = 1
> P(A) :Zm < 0.

t=0 t=0

Thus, by the first Borel-Cantelli lemma, vertex a is a.s. visited finitely often. However,
vertex b and c are a.s. visited infinitely often. Indeed, this never occurs in the time-

homogeneous case.

In most interesting examples of RWCEs that we consider, however, the various no-
tions of recurrence and transience will coincide. Hence, we follow [2] and adopt the

strongest definitions of recurrence or transience as below.

Definition 4 (Recurrence/Transience/Mixed-Type). An RWCE on G = (V, E) is re-
current if a.s. every vertex is visited infinitely often. It is transient if a.s. every vertex

is visited finitely often. Otherwise, the RWCE is of mized-type.

Of course, the RWCE in example 1 is of mixed-type. In this example, note that
the probability of jumping from b to a tends to 0 as t — oo. The following condition

prevents this from happening.

Definition 5 (Elliptic RWCE). Let {(X%, w;) }en be an RWCE on G = (V) E). For each
{z,y} € E, assume that P(X;.; =y | X; = ), whenever well-defined, is bounded away

from 0 as t varies. Then, we say that {(X;, w;)}2, is elliptic (uniformly in time).

This is useful since any elliptic RWCE that a.s. visits some vertex infinitely (resp.
finitely) often is also recurrent (resp. transient). The argument is the same as the time-
homogeneous case. Namely, fix any z,y € V. Then, by ellipticity (and connectivity of
(), whenever the RWCE is at x, the probability of eventually visiting y is at least some
constant p,, > 0 independent of time. Hence, if  is visited infinitely often, then a.s. y
is visited infinitely often. The contrapositive implies that if y is visited finitely often,
then a.s. x is visited finitely often.

Throughout this paper we will mostly focus on bounded RWCEs, which are a special
case of elliptic RWCEs. We note that there are many interesting examples and problems

even with this assumption.

Definition 6 (Bounded RWCE). Let {(X;, w:)}ten be an RWCE on G = (V, E). Then,
the RWCE is bounded if there are deterministic weights a,b: E — (0,00) so that a.s.
a(e) < wi(e) < b(e) foreacht € Nand e € F.
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Finally, a particularly important question is whether there is an essential difference

between adaptive and nonadaptive RWCESs regarding recurrence or transience.

Definition 7 (Adaptive/Nonadaptive). An RWCE is nonadaptive if the distribution of
Wy given wy, . .. w; is independent of X, ..., X;. Otherwise, the RWCE is adaptive.

We will illustrate this question further in section 2.1 below.



Chapter 2
Two Illustrative Problems

The purpose of this chapter is to introduce interesting problems and techniques involving
recurrence or transience of bounded RWCEs. We begin with the monotone bounded

problem, then show a phase transition for a non-monotone RWCE on Z.

2.1 Monotone Bounded RWCEs

Let G = (V, E) be a graph under the usual conditions and {(Xy, w;)}ieny be an RWCE
on G. Consider any condition on {w;}ey that requires (G, w;) to be a.s. recurrent for
each t € N. In order to demonstrate a fundamental difference between adaptive and
nonadaptive RWCEs, we are most interested in conditions that imply recurrence for
nonadaptive RWCEs but not for adaptive RWCEs. Of course, one can develop the
same question for the transient case, which we will also consider. For sake of simplicity,
however, we will focus on the recurrent case in the following discussions.

An interesting candidate for such a condition was given by Amir et al. in [2]. Namely,
they required {w;}ieny to be a.s. increasing (edgewise) and bounded above by some
recurrent (G, w). This means wi(e) < wyii(e) < w(e) for each ¢ € N and e € E. By
Rayleigh’s monotonicity principle, it follows that each (G, w;) is a.s. recurrent. In [2],
they further constructed an adaptive RWCE on Z? that satisfies the monotone-bounded
condition but is transient. However, it remains an open question to show that any
nonadaptive walk satisfying the monotone-bounded condition must be recurrent. We
term this problem as the monotone bounded problem for RWCEs. Also, we note that the

analogous case for transience (decreasing weights bounded below by a transient graph)
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was partially affirmed by Dembo et al. in [§].

An important remark is that we are interested in results for arbitrary graphs G. If G
is required to be a tree, then Amir et al. [2] showed that there is no difference between
adaptive and nonadaptive walks under the monotone-bounded condition: One will al-
ways have recurrence. This can be thought as a “lower-bound” result for trees, as there
is no difference regarding adaptiveness under any condition implying the monotone-
bounded condition for trees. However, the monotone bounded problem is completely
open for general graphs G.

The situation is quite similar even when we restrict our attention to a special type of
monotone bounded RWCEs, namely once-reinforced random walks. A once-reinforced
random walk on G is an RWCE where wy(e) = 1 for any e € E and wi(e) = 1+§
for some universal § > 0 if e € E has been crossed at least once up to time . When
G is a tree, Collevecchio et al. completely characterized the regions of § that imply
recurrence or transience by introducing a quantity called the branching-ruin number [4].
In contrast, on Z? the question of recurrence or transience remains completely open.
We remark that partial progress has been made by Kious et al. [12] for graphs of the
form Z x I" where I is finite.

In the remaining section, we discuss the proof of Amir et al.’s result on the monotone
bounded problem for trees which we mentioned above. The proof illustrates a standard
technique of showing recurrence by constructing a supermartingale and then using the

optional stopping theorem to bound the probability of return.

Proposition 1 (Amir et al.). Let G = (V, E) be any tree with the usual assumptions.
Let {{ Xy, w;) }ien be any RWCE on G such that {w; }en is increasing and bounded above
by (G, ws) which is recurrent (we assume wy, Wo are deterministic). Then, { X, }ien is

also recurrent.

Before proceeding to the proof, we briefly recall the optional stopping theorem as it
will be used throughout this paper. Let {X;}ien be a supermartingale (resp. submartin-
gale) and 7 be a stopping time with respect to the filtration {F;}en. The optional
stopping theorem states that if there is C' > 0 such that | X;,,| < C for all t € N, then
E[X;] < E[Xy] (resp. E[X;] > E[X,]). Of course, there are other versions of the theorem

as well, but for our purposes this version suffices. We now proceed to the proof.

Proof of Proposition 1. Fix the origin s € V and assume that Xo = = € V' \ {s} is
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determined. Also fix n large enough so that = € V,, and consider G,, = (V,,, E,,). Let i
denote the unit Kirchoff flow on (G,,, W) from s to dV,, and define

fiw) == i(e)rie)

for each v € V,, where the sum is over edges of the unique path from s to v. First, it is
clear that {f;(v) }ien is decreasing since {wy }en is increasing. Next, by definition of a

flow, one can see that

Xt7y)

B[f(Xin) | Bl = £ + 30 X080 (v, )

wy(Xy)
= ft(Xt)

if t < 7 where 7 = inf{t € N: X, € {s} U9V, }. Hence, we see that

]E[ftH(XtH) ’ Ft] < E[ft(Xt+1> ’ Ft] = ft(Xt)

if t < 7 and thus {gia- }ten is @ supermartingale where g, = f;(X;). Since f; is decreasing
over time and V, is finite, we see that |g;| < C for some constant C' > 0 independent of

t. By the optional stopping theorem,

From our definition above, for any y € 0V,,, note that f.(y) is the voltage at y induced
by i, hence fo(y) = R, which is the effective resistance between s and 9V, in (G, W )-
Since f; is decreasing, fi(y) > foo(y) = R, for any ¢ € N and we get

E[f,(X,)] > R - P(X, € 0V,)

since fr(s) = 0. Thus,
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as n — 0o since (G, wy) is recurrent and

fola) <Y ro(e)
S—T
which is a constant independent of n. In other words, the RWCE a.s. returns to s. At
any time of return, the RWCE is again monotone bounded, hence the RWCE returns
to s infinitely often. Finally, since the RWCE is bounded, a.s. every vertex is visited

infinitely often and we conclude our proof. [

The key part of Amir et al.’s proof above is constructing the supermartingale f;(X;).
However, this doesn’t work for general graphs G since there may be multiple paths from
s to v and f;(v) may not even be well-defined. In chapter 3, we construct a different
supermartingale that cannot imply a result as strong as Proposition 1 but nonetheless

works for any graph G.

2.2 A Non-Monotone RWCE on Z

In this section, we consider a nonadaptive, non-monotone RWCE on the nearest-neighbor
graph of Z, say G = (V, E). Moreover, for notational convenience we index time by
te{l,2,...}. Foreacht > 1 and z € Z, let

wi(r —1,2) =1+ (=1)"g,

where ¢, = 1/t* for some constant a > 0. Then, we obtain a sequence of deterministic
weight functions {w,;};2,. In fact, w; is not proper, but we will allow this throughout
this section. For any fixed ¢, note that w;(e) alternates between 1+ ¢; and 1 —&; as one
traverses e € E from left to right. Similarly, for any fixed e € E, the values of w;(e)
alternate as 1+¢e1, 1 Fey, 1 +e3,.... In particular, we see that {w;}$2; is non-monotone.

Let {(X, wy) }52, denote the RWCE on G where {w;}$°, are given as above. Also let
X7 = 0. In this section, we prove the following phase transition which was previously
observed in [14].

Proposition 2. Let {(X;, w;)}5°, denote the RWCE above. Then, {X,}2, is recurrent
if a > 1/2 and transient if « < 1/2.
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Let w,, denote the all-ones weight function on E so that w; — w. edgewise. For
any « > 0, note that sup,.p |wi(e) — woo(e)| = e — 0 as t — oo. Hence, Proposition 2
shows that uniform convergence of weights is not sufficient, and the rate of convergence
is in fact crucial. On the other hand, considering Proposition 1 for any once-reinforced
random walk on Z shows that uniform convergence of weights is also not necessary.

The proof of Proposition 2 crucially relies on the fact that X; is expressible as the
sum of ¢ independent Bernoulli variables, hence we are able to use classical tools from

probability theory. We begin with the proof of the transience case of Proposition 2.

Proof of Proposition 2 (Transience). Since G is bipartite and X; = 0, note that for each
t>1,

where the &, are independent and & = 1 with probability (1 + €;)/2 and & = —1

otherwise. Moreover,

Since &, € [—1, 1], by Hoeffding’s inequality, we have

P(X; = 0) <P(|X; — E[X]| > E[X;]) < exp (—Istpft]g)

for ¢ > 1. Since E[X,])?/(2t — 2) > 0, we further have

for any j > 0. Since E[X,] = O(t'7%), we see that P(X, = 0) = O(1/t(172®)7) for any
j > 0. Thus, if (1 — 2«a)j > 1 or equivalently o < (1 — 1/7)/2, then

o

> P(X, =0) < .

Indeed, by Borel-Cantelli, we a.s. have X; = 0 finitely often. Moreover, since {w;}{2, is
bounded, it follows that a.s. every vertex in Z is visited finitely often. Letting j — oo,

we conclude that {X;}:2, is transient for all @ < 1/2 as desired. O
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We now show the recurrent case of Proposition 2.

Proof of Proposition 2 (Recurrence). We will construct a deterministic sequence of times
{tx}72, such that ¢, > 1 and

]:P(th+1 <0 | th) Z ﬁ

for some constant # > 0 independent of k. We claim that this implies that a.s. X; =0
infinitely often. To see this, first note that if X; < 0, then a.s. there is T" > t such that
Xr = 0. This follows from a simple coupling argument as the SRW on Z is recurrent,
while our RWCE always has a positive bias to the right (which diminishes over time).
On the other hand, if X; > 0, a.s. there must exist ¢; > ¢ such that X;, < 0. This
implies the existence of some T € (¢,t;) such that X = 0. Hence, for any ¢ such that
X; # 0, a.s. there is T' > t such that X7 = 0, thus X; = 0 infinitely often.

Moreover, since {w,;}{2, is bounded, it would further follow that a.s. every vertex in
7 is also visited infinitely often. Hence, to show recurrence, it suffices to show that for
any « > 1/2; we can construct the sequence {t}72, as above. For our desired property,

one can easily see it is enough to show that
]P)(th+1 < O ‘ th :tk - 1) Z B

Fix any a > 1/2 and let Z ~ N(0,1). Let § = P(Z < —3)/2 > 0. We will inductively
construct {tx}52,. Choose t; = 1. Next, assume that we have successfully determined
tp. We will show how to determine ¢;,;. For any ¢ > ¢, given X;, = t; — 1, we have

Xi =t — 1+ Skt where Sy = &, + &1 + -+ + &§—1. Then,

Skt 28j7

J=tk

Var[Sm] = t — tk Z 6?

J=tk

Since tj, is a constant, note that E[Sy ] ~ ﬁtka and Var[Sy| ~ t. Since Sy, is a

sum of independent variables and |§; — ¢;| < 2 for any j > 1, one can easily see that
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Lyapunov’s condition is satisfied for S, namely

- S Bl — el _
t—o0 Var[Sk,t]3/2

Hence, the central limit theorem (CLT) holds for Sy, (in this case known as the Lya-
punov CLT) and we have

Skt — E[Sk] Ny

ot Var(S.)
in distribution as t — oo.
Next, note that
=l — E[Sk]
At = — Ff—0—m «
val"(Skﬂg)
as t — oo where ¢, = =2 if « = 1/2 and ¢, = 0 if @ > 1/2. Thus, there exists 77 such

that ar;, > —3 for all ¢t > 7). Hence, we have
P(X, <0] Xy, =tp —1) 2 P(Spy < —tg) = P(Yiy < agy) 2> P(Yip < —=3)

for all ¢ > T;. Moreover, since P(Yy; < —3) — P(Z < —3), there exists T, such that
P(X: <0]| X, =tx—1) >P(Z < —3)/2 for all t > T). Taking ty4; = max{T,tx} gives

our desired construction and we conclude our proof. O

Given g; = ¢/t*, we remark that the results from Proposition 2 hold for any constant
¢ > 0. In general, one can construct a similar RWCE on any recurrent tree such that
there is always an outward bias that diminishes over time. An interesting open question
is determining the phase transition of such processes, and whether the threshold may
differ among different trees. The above techniques no longer work as X; is no longer

expressible as a sum of independent Bernoulli variables.



Chapter 3

Main Result

In this chapter, we follow the martingale method discussed in sections 1.1 and 2.1 to
derive a condition for recurrence or transience of bounded RWCEs on general graphs.

The following is our main result.

Theorem 1. Let G = (V, E) be any graph and (G,wq) be recurrent (resp. transient)
where wy € (0,00)¥ is deterministic. Let {(X;, w;)}ien be any bounded RWCE on G. If
there is C' > 0 so that

Z [re(e) — reqa(e)] < C

almost surely, then {X; ey is recurrent (resp. transient).

From Rayleigh’s monotonicity principle, one can easily check that if

Z [re(e) — re11(e)| < oo,

ecE

then (G,w;) is recurrent (resp. transient) if and only if (G,w;;1) is recurrent (resp.
transient). Hence, under our condition, all (G, w;) are a.s. recurrent (resp. transient).
Our condition is quite restrictive as we are requiring a double-summation to be bounded.
Nonetheless, the condition includes cases where w; # w1 for infinitely many ¢ € N.
Moreover, it holds for any graph G.

Before discussing the proof, we state some corollaries that follow from Theorem 1.

Corollary 1. Let G = (V, E) be any graph and (G,wy) be recurrent (resp. transient)
where wy € (0,00)F is deterministic. Let {(X;,w;)}ien be any bounded RWCE on G

16
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that is also edgewise monotone. If there is C' > 0 so that

S Irole) — 1) < €

almost surely where

roo(€) 1= tlgglo ri(e),

then {X;}ien is recurrent (resp. transient).

Proof. This follows immediately from Theorem 1. The edgewise limits a.s. exist since
our condition implies that {r;(e) };en is Cauchy for each e € E. Moreover, note that the

direction of monotonicity can be different for each edge. m

If we limit our interest to a deterministic sequence of weights, we can further alleviate

the condition of summing over all edges.

Corollary 2. Let G = (V, E) be any graph of bounded degree. Let {w;}ien be a deter-

ministic sequence of weights in (0,00)F so that wy(e) — w(e) for each e € E and

Z€t<00

where £, := sup,cp |ri(e) — r(e)| for each t € N. If (G,w) is recurrent (resp. transient),

then the RWCE { X, }en is also recurrent (resp. transient).

Proof. Assume that (G, w) is recurrent. We will create an adaptive process that has the
same distribution as { X} };en. Namely, consider the RWCE {(X/, w}) }+eny where X = X

and

s wy(e) e is adjacent to X7,
w(e) == ' _
w(e) e is not adjacent to X|

for each ¢ € N. Since transitions are local, one can easily see that {X]}ien = { X Hen in
distribution. Next, assume Xy = s € V' is determined. Then, wyj is also deterministic,
and (G, wy) is recurrent since it differs from (G, w) finitely. It remains to show that
Theorem 1 is applicable to {(X}, w;) }tey where X = s.

First, we show that {w] };en is bounded. Fix any e € E. Since & — 0, there is ¢’ such
that ¢, < r(e)/2 for all t > ¢'. Thus, |r(e) —r(e)| < e and r(e)/2 < ry(e) < 3r(e)/2 for
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all ¢ > /. This shows that inf,eymi(e) > 0 and sup,.yri(e) < oo for each e € E, thus
{w; }ten is bounded. In particular, {w;}ien is also bounded.

To conclude, note that for any e € E, we have
ri(e) = ria(e)l < Irile) —r(e)| + Ir(e) — i (e)] < & + e

Moreover, r; and r;,; differ by at most 2A edges where A := sup,y deg(v). Thus,

> Irile) = ri(e)l < 2A(er + eet)

ecE

which gives

ST Ire) — (O] <283 (e +e) <4AY e

t,e teN teN

Since the right-most term is a finite constant, we conclude by Theorem 1 that {X]}ien

and thus { X, };en is recurrent. The proof for transience is exactly the same. O

3.1 Proof Overview

Here, we give an overview of our proof of Theorem 1. Let {(X, w;) }+en be any RWCE on
G = (V, E) satisfying the conditions of Theorem 1. Since {w; };cn is bounded, recall that
our RWCE is in particular elliptic. Hence, to show that our RWCE is recurrent (resp.
transient), it suffices to show that some vertex is a.s. visited infinitely (resp. finitely)
often.

Our proof consists of two main parts. First, we show Theorem 1 in the special case
where s has a single neighbor. To do so, we use construct a super/submartingale of
the form {f;(X})}ien and use the optional stopping theorem as discussed above. In
particular, the construction works on any graph as we consider the maximum /minimum
ratio of vertex-voltages across a single time step. Since s has a single neighbor, for any
v # s, the voltage at v is positive and thus ratios are well-defined.

Next, when s has multiple neighbors, we attach a new vertex s’ to s and construct
a new RWCE whose recurrence or transience implies the recurrence or transience of the

original RWCE. Then, we apply the first part above to this new RWCE by considering
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s’ as the origin of G'. This concludes the proof.

3.2 The Single Neighbor Case

Throughout this section, we assume that the origin s has a single neighbor. We aim to

show the following special case of Theorem 1.

Lemma 1. Let G = (V, E) be any graph and wy € (0,00)¥ be deterministic such that

(G,wq) is recurrent (resp. transient). Assume the origin s € V has a single neighbor
and let {(X¢, w) }en be any bounded RWCE on G. If there is C > 0 so that

Z [re(e) — rega(e)] < C

almost surely, then {{X;, w;) }ien is recurrent (resp. transient).

Indeed, choosing the origin is arbitrary and it suffices for a vertex of degree one to
exist. As mentioned above, we will construct a super/submartingale and then apply the
optional stopping theorem to derive a condition for recurrence or transience. Then, we

will show that this condition is satisfied assuming the condition of Lemma 1.

3.2.1 Super/submartingales

We first construct the desired super/submartingale. Assuming that the origin s and the
RWCE {(X, w;) }4en are given, we recall some notation involving electrical networks.
Forn > 0,let V,, :={v € V : d(s,v) < n} and 9V,, := {v € V : d(s,v) = n} where d
is the shortest-path distance on G. Let G,, = (V,,, E,,) denote the subgraph induced in
G by V,. Forn > 1,t € N, and u € V,,, let v,+(u) denote the (random) voltage of u in
(Gp,wy) when s is grounded and 9V}, is kept at voltage 1. If u ¢ V,,, define v, ¢(u) := 1.

Again, the key connection between random walks on graphs and electrical networks
is that whenever wy is fixed, v, .(u) equals the probability that the weighted random walk
{Zk}ren on (G, wy) with Zy = u € V,, will hit 9V}, before s. In particular, both quantities
are harmonic, meaning {v, +(Zxng) }ren is a martingale with respect to {Zg }reny where
0 :=inf{k € N: Z; € {s} UIV,}. In our case, the analogous process for {(X;, w;) hen
is {vn¢(Xiar) breny where 7 = inf{t € N: X, € {s} U0V,,}. Unfortunately, for arbitrary
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u € V, the sequence {v,+(u)}ten is not necessarily monotone and thus {vy, +(Xiar) b ren
is not a super/submartingale.

To bypass this difficulty, for each t € N we consider the maximum/minimum of the
ratio vy 141(u) /vy (uw) over all w € V,, \ {s}. Forn > 1 and t € N, let

Qg @ = max U”Ll(u) > 1,
ueVi\{s} Upnt(u)
B¢ := min U”H—l(u) <1,

ueVa\{s} Upnt(u)

where the inequalities follow by considering u € 0V,,. Also, the quantities are well-
defined (positive and finite) since s has a single neighbor which gives v,; > 0 on
Vo \ {s} for all ¢ € N. Finally, recall that 7 = inf{t € N: X; € {s} U9V, } and F, =
o(Xo, ..., X¢,wo, ..., w) for each t € N. The following is our desired super /submartingale.

Lemma 2. Fizn > 1 and let

Ut (X¢) B vnt(Xt)

At —
t—1 Pt T
k=0 ¥n,k Hk 0 Bk

fort € N. Then, {Ain:bien is a supermartingale and { By, }ien is a submartingale with

respect to {Fi}ien.

Proof. 1t suffices to prove the supermartingale case as the submartingale case is identical.
First, note that

_ Un,t+1(Xt+1) < Un,t(Xt+1)

t — t—1
[Tieo @k k=0 On,k

by construction. Next, if t < 7, we have (t + 1) A7 =t + 1 and thus

[A(t—‘,—l AT | -Ft] <E E [Un,t(Xt+1) | -7:1;] = Airr

t—1
k=0 A k

Unt(Xt+1) |]_-t] _

kok

If t > 7, then

E[A@ar | Ft] =E

T—1
k=0

nTXT nTXT
U’( ) ‘ft]: ! ( ) :At/\T
k

as desired and we conclude our proof. O
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3.2.2 Optional Stopping Theorem

We now apply the optional stopping theorem to the super/submartingale constructed
above. For the results of this section, we remark that it suffices to assume elliptic-

ity instead of boundedness of the given RWCE. We begin with the supermartingale
{At/\T}tEN-

Lemma 3. Let {(X;,w)}en be any elliptic RWCE on G = (V, E) and assume the
origin s € V has a single neighbor. For each n > 1, assume there is a, € R such that
[0 ant < an < 0o almost surely. Iflimsup,, . a, < oo and v, (u) — 0 almost surely

asn — oo for anyt € N and u € V, then {(X¢, wy) hen is recurrent.

Proof. By ellipticity, it suffices to show that s is a.s. visited infinitely often. Since
ant > 1, note that the conditions of the lemma hold for any subprocess {(X;, w;) }isv
where t' > 0. Hence, it suffices to show that X; = s for some ¢ € N assuming Xy = u # s.
Fix some n > 1 and recall the supermartingle { A4, }sen from Lemma 2. Since [Ajp,| < 1

for all t € N, the optional stopping theorem gives E[A,] < E[A]. Hence,

E[Umo (Xo)] Z E

7—1

t=0 On,r n

Vs (X,) ] _ P(X, €0V,)

which can be rearranged as P(X, € 9V,) < ay, - v,0(u). Taking the limit superior on

both sides of the inequality gives our desired result. O]
Next, we proceed similarly with the submartingale { Biar }en-

Lemma 4. Let {(Xi,wy)}ien be any elliptic RWCE on G = (V, E) and assume the
origin s € V' has a single neighbor x. For each n > 1, assume there is b, € R such that
a.s. [129 Bnt = by > 0. Ifliminf, .o b, > 0 and inf, ; v, ,(x) > 0, then {(X;, wy)}ren

18 transient.

Proof. By ellipticity, it suffices to show that s is a.s. visited finitely often. We will show
that given X; = z, assuming P(X; = z) > 0, the probability of never returning to s
again is at least some positive constant independent of ¢. This suffices since whenever
the process visits s, it must visit x the next step.

First consider when Xy = . Fix some n > 1 and recall the submartingale { Bir; }ten

from Lemma 2. Since |Bia,| < 1/b, < 00, the optional stopping theorem gives E[B;| >
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E[By]. Hence,

E[vn0(Xo)] <E

T—1
t:0 n,T

U (X) ] _ PLX, €9V,
<=

which can be rearranged as P[X, € 90V,] > b, - v,0(z) > b, - inf, ; v, +(x). Taking the
limit inferior on both sides as n — oo, we get P[never return to s again | Xo = z| > K
for some K > 0.

When X; = x, we can construct a submartingale similar to Byx, by viewing X; as
the initial vertex and (G, w;) as the initial graph. Since (3, < 1, the same method gives

P[never return to s again | X; = 2] > K as desired and we conclude our proof. ]

3.2.3 Bounding Voltage-Ratios

Having Lemma 3 and 4, we want to use these results to prove Lemma 1. For this
purpose, we estimate o, ; and 3, by deriving an upper bound for |v,, ¢11(w) /vy +(u) — 1].

We begin with the following expression for |vy, ;41(u) — v, (w)].

Lemma 5. Foranyn >1,t €N, and u € V,,_1 \ {s} we have

1 n n,
Unat (W) = 0nsW) = s D (@) = reaa(€)) - i w2 1) - v, (@)
n, ) n e:{x,y}EEn

where R, +(a,b) is the effective resistance between vertices a,b in (G, w;). Also, ng
is the unit current in (Gp,w;) from v (which is grounded) to S C V, \ {v}. Finally,

zzg(x,y) is the amount of the current ng across {x,y} from x toy.

Proof. Note that all random variables in the claim are determined given w; and w;1.
The key idea is to represent v, ;11(u) in terms of the current i, := ZZEZéVn Namely, we

claim that

Upti1(u) = Z Z in(x,y). (3.1)

yeIV,, x€VY

In words, the right-hand side of (3.1) is the total amount of current in ¢, that flows
into dV,,. Recall that the probabilistic interpretation of i;(x,y) is given by the weighted

random walk on (G,,w;;1) that begins at u and runs until hitting s U 9V,,. Namely,
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i1(z,y) equals the expected net number of crossings of {x,y} in the given direction
during the random walk. In particular, it is zero if x ~ y. Taking x ~ y as specified in
the summation above, if x € sUOV,, we also have i;(z,y) = 0 as {z, y} is never crossed.
Otherwise, if x € V,,_1\ {s}, we can cross {z, y} exactly once during the random walk as
it will terminate after crossing. Hence, i;(x,y) equals the probability that the random
walk terminates after crossing {x, y}. It follows that the right-hand side of (3.1) is simply
the probability that the weighted random walk on (G,,, w;11) beginning at w will hit 9V,
before s. By the probabilistic interpretation of voltage, this is exactly vy, 141 (u).

The rest of our proof is routine algebra of flows, which we explain below. First, by

Kirchhoff’s current law we extend (3.1) to get

Un,t-i—l( - Unt Z Unt Z Z1 x ?/)

yeVy zeV,
As current is antisymmetric, we further obtain

Unir (1) = () = 5 3 ()~ vea(2)) - in(a,)

z,y€Vn
1 | |
= mear) 2 0@y i)

" e={z,y}€E,
where i := izgvn and the second equality is by Ohm’s law [10].

To conclude, it suffices to show that

L:= Z rer1(e) - i1 (z,y) - io(x,y) = 0.

e:{m,y}eEn

We evaluate L by essentially reversing the above process. Let ¢(z) denote the voltage
of x € V,, induced by 4;. Then, by Ohm’s law we have

L= 3 (sly)—9¢())-iolz,y)

e={z,y}€FEn

=2 3 (6) ~ 6(2) o)

z,YEVn

—Zﬁb Zloﬂﬁy)

yeVy, €V,
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where the second and third equalities follow since current is antisymmetric. By Kir-

choff’s current law, we can simplify further to obtain

L=¢(s) Y oz, s)+ > o(y) Y iolz,y).

zeVn yeoVy, zeVn

Note that ¢(y) = ¢(s) for any y € 0V, and ig is a unit flow. Hence, we get L =
—¢(s) + ¢(s) = 0 as desired and conclude our proof. O

We now crucially use the assumption that s has a single neighbor to get the following

corollary.

Corollary 3. Assume that s has a single neighbor x. Then, for anyn > 1, t € N, and
u €V, \ {s}, we have

Unt—i—l( ) ‘ < wy(s,x Z’rt —rer1(e)].

Un t(u) eelk

Proof. Since the right-hand side of Lemma 4 involves unit currents, taking absolute

values gives

1
- 7 a1t r - T €
Rodle ) 2 () 77

[On 141 (1) = v ()] <

Moreover, the inequality trivially holds for u € 9V,,. Finally, since s has a single neighbor
x, we see that v, ¢(u) > v,¢(x) = (s, 2)/Rus(s,0V,). Combining the two inequalities

gives our desired result. O

3.2.4 Proof of the Single Neighbor Case

We are now ready to prove Lemma 1.

Showing Recurrence
We begin with the recurrent case.

Proof of Lemma 1 (Recurrence). We aim to use Lemma 3. First, we check that for any

t € N and u € V,,, we have v, (u) — 0 almost surely as n — oo. Let d(s,u) = ¢ and
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(xo,...,x¢) be a path from s to u. Then, for n > ¢ we have
1 -1 1 -1
-1t
Upt(U) = =———~ o (T, Ty )T (g, Tl < ——— re(Tp, Tpgt).
,t( ) Rmt(s,avn) " ZS,@Vn( k kJrl) t( ky LEk4+1 Rn’t(s,avn> e t( k k+1)

Next, by the boundedness condition there exists C; > 0 such that ) d. < C; almost
surely where 0, := Y 2 |ri(e) —ri11(€)| for e € E. Hence, it follows that |ro(e) —r(e)| <
de < Cy and thus 1(e) < ro(e) + Cy. Since 1¢ is deterministic, Zi;t ri(Tg, Tpyq) 18
bounded and it suffices to show that a.s. R,,+(s,0V,,) — 0o as n — oo. Let i := i:,gvn-

Then, by Thomson’s principle, we a.s. have

Rauo(s,0V,) < > i2(e)role) < Y i*(e)(ri(e) + 6e) < Ryu(s,dV,) + Ci.

EEEn eGEn

Since (G, wy) is recurrent, it follows that a.s. R,,+(s, dV,,) — oo for each t € N as desired.

Next, we show that the condition on «,,; holds. With the crucial assumption that
the RWCE is bounded, there exists Cy > 0 such that w,(s, z) < Cy where z is the unique
neighbor of s. By Corollary 3, we get

[Tewi <]] (1 + > wy(s, @)ri(e) — Tt+1(€)|)

eckE

< exp (Z wi(s, z)|re(e) — 7“t+1(6)|> < e,

t,e

Therefore, we can choose a, = €“'“? in Lemma 2 for each n > 1. This concludes our

proof. O

Showing Transience
By similar methods, we next prove the transient case.

Proof of Lemma 1 (Transience). We aim to use Lemma 4. We first check that
intf Unt(z) > 0.

Since z is the unique neighbor of s, recall that v, () = (s, z)/Rn+(s,0V,,) for n > 1
Also, by the boundedness condition, there exists C; > 0 such that a.s. |ro(e) — ri(e)| <
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de < Cy where 6, := Y = |ri(e) —rit1(e)|. Letting ¢ := Z.Z:gvna Thomson’s principle gives

Rua(s,0V,) < Y i%(e)rie) < > i%(e)(ro(e) + 8.) < Ryo(s, dV,) + Ci.

ecEy, eckn

Moreover, as the RWCE is bounded, there exists Cy > 0 such that wy(s,z) < Cy for all
t € N. Hence,

1/Cy N 1/Cy
ano(s, 8Vn) + 01 - 11_>H1 Rmo(s, 8Vn) + Ol

Ung(T) =
since R, 0(s,0V,,) is increasing in n. As (G, wy) is transient, we conclude that
inf v, () >0
n,t

as desired.

Next, we show that the condition on (3, holds. Note that
Pt 2 Unga () 2 inf o, (2)

for any n > 1 and ¢ € N. Moreover, let S := {t € N : g, > 1/(2Cy)} where o, =
Y oeer |Te(€) — miqa(e)]. Since Y7 % 0y < C) as., it follows that |S| < 2C,C, almost

surely. Beginning with Corollary 3, we have
ﬁﬁnt>Hﬁnt'H(1—020't)>Hﬁnt-exp _Zﬁ .
o ’ N ’ 1 — Cyo,
t=0 tes t%s tes t¢S
Since 1/(1 — Cyoy) < 2if t ¢ S, we conclude that a.s.
0 [2C1C2] |'2CICQ~|
H 5n,t > (intf Un,t (QJ)) exp —202 Z oy | > (intf Unt (q})) 672016‘2_
t=0 ’ t23 n,

Choosing the final value as b,, in Lemma 3 for all n > 1, we conclude our proof. O
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3.3 The Multiple Neighbor Case

We now consider the general case where the origin s has multiple neighbors. As men-
tioned in section 2.1, the idea is to attach a new vertex s’ to s and construct a new
RWCE on the new graph.

3.3.1 Desired Properties

Here, we describe the desired properties of the new RWCE. Recall that s is the origin of
G and {(X;, wy) }ien is a bounded RWCE on G that satisfies the boundedness condition.
Also, wy is deterministic. First attach a vertex s’ to s to get G' = (V’, E’) where
V' =V U{s} and ' = F U {s,5}. We aim to construct a new bounded RWCE
{(X{,w}) }ten on G" whose recurrence (resp. transience) implies the recurrence (resp.
transience) of {(X;, w) }en. Then, viewing s" as the origin of G’, we can apply Lemma
1 to {{X], w]) }en if it also satisfies the boundedness condition.

Note that the restriction of {(X], w})}ien to G induces a natural RWCE on G. If
this induced RWCE is equal in distribution to {(X;, w;) }ien, we claim that we have our
desired implication of recurrence or transience. More concretely, let Ny be the number
of edges in F traversed by (X{,...,X]) for each t € N. Also define stopping times
. = inf{t € N: N; = k} for k € N. Then, we say the RWCE induced by {(X{, w})}ien
on G is {(Yg, Wy freny where Yy, = X7 and wy, = w, [p for each k € N. In particular, the
vertex sequence {Y} }ren simply tracks the edges in F crossed by {X]}ien.

We now explain how the desired implications follow if {(X/, w})}+en is bounded and
{(Yk, wr) ren equals {(X;, wy) by in distribution. First consider when {(X7], w;})}en
is recurrent and thus a.s. visits ¢ infinitely often. If s is visited finitely often in
{(Yk, wk) }ken, then the only way s’ can be visited infinitely often in {(X], w})}ien is
by alternating between s and s’ infinitely many times in a row. However, this happens
with probability zero as {(X/, w}) }+en is bounded and the probability of jumping from
s to s’ is bounded above by some number less than 1. Hence, s is a.s. visited infinitely
often in {(Y%,ws) tren which implies recurrence of {(X;,w;)}en. Next, assume that
{(X], w}) }+en is transient and thus a.s visits s finitely often. Since we only remove ver-
tices when obtaining {Yj }ren from {X/}ien, it follows that s is a.s. visited finitely often

in {(Yx, wk) }reny which implies transience of {(X;, wy) hen.
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3.3.2 Formal Construction

Here, we construct our desired {(X/,w;)}ien. We determine the random variables se-
quentially, beginning with X, then wy, then X7, then w}, and so on. The key idea is to
determine w; as if we were determining wy, given (Yp, Y1,...,Yn,,wo, ... ,wn,1) as the
history. If {X[ |, X{} = {s, s}, however, then N; = N;_; and in this case we freeze the
weights by letting w; = w)_,. Indeed, we unfreeze afterwards as soon as an edge in E is
crossed.

For notational simplicity, let Wg := (0,00)" and wj 5 := wj g for any wj € 1A%
We now give the measure-theoretic construction of {(X], w})}en. Let X = Xj in
distribution and let wy [p= wy. Also let w;(s,s’) = 1 for all ¢ € N. Then, it remains to
define the conditional probabilities P(w;,, z € A | G;) for each t € N and A € B(Wg)
where G := o (X, ..., X{, 1, w, ..., w;). Inthis process, we will involve standard notions
from probability theory such as regular conditional probabililty distributions (RCPD),
Polish spaces and the Doob-Dynkin functional representation, and extension theorems
(Kolmogorov, Carathéodory). We include [3, 7, 11] as a reference for these notions.

Let (€, F,P) denote the underlying probability space and P, e (7)) B(WE) x
Q — [0,1] denote the RCPD of w41 given G, := o(Xo, ..., Xi11,wo, ..., w) for t € N.
The RCPD exists since E is countable and Wpg is a Polish space. By the Doob-Dynkin

functional representation, we have

13Wt+1|gt(A7 w) = ft,A<X0(w)7 e >Xt+1<w)7 wo(w>7 s 7wt(w>>

for any A € B(Wg) and w € Q where f; 4 : VT2 x (Wg)"™! — [0, 1] is some measurable
function. Moreover, we know that f;.(Xo,..., X1, w0,...,ws) is a.s. a probability
measure on (Wg, BOWE)).

To conclude, when Ny = N; + 1, we require
Plwy, 5 € Al G) = fn,aYo, o Y1, Wo, - - -, Wh, ) (3.2)
Otherwise, if Nyy1 = N¢, then given G; we require w;, ; = w;. Note that if we know
(Xo, ..., Xy, wp, . .. ,wt,l)i(Y[},...,Yt,wo,...,wt,l)

for t < k+ 1, then (3.2) is a well-defined probability for ¢ < 7,47 — 1. We will show
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this equality in distribution while proving { (X, w;) }ten < {{Y}, w) hen in the following

section.

3.3.3 Verifying the Construction

Here, we justify our construction through the following lemma.

Lemma 6. We have {(Xt,wt>}t€Ni{(Yt,wt)}t€N. In particular, (3.2) is well-defined
for allt € N.

Proof. By Kolmogorov’s extension theorem for Polish spaces, it suffices to show that

BN

(X07w07"'7Xt717wt717Xt) (}/v()?w())"'a}/:‘,flawtfl?}/;f)) (33)

[l

(Xo,'ll}(),...,thl,'wtfl,Xt,wt) (%,wo,...,}ﬁ,l,wt,l,Y;?wt) (34)

for each t € N. We proceed by strong induction on ¢t € N. If ¢t = 0, both claims follow
since 19 = 0. Next, assume that both claims hold for all £ < k where k£ € N. We first
show that (3) also holds for t = k4 1. By Carathéodory’s extension theorem, it suffices
to show that

P ({X; =z} {w; € EjM_g) =P ({Yi = 2.} {w; € E;}iy)

for any g, ...,xp41 € V and Ey, ..., E; € B(WEg). Beginning with the right-hand side,

we have

[k+1 k
P({Y; = 2} {w; € EjYio) = E ] vime [ [ 1esem,
L i=0 =0

[k k
=E H ly,=a, H leGEjE [1Yk+1:$k+1 | f;'k}]
L i=0 =0

where F, = o(X{,..., X],wp, ..., wy). If Y # s, then we have E [1y,,,—4,,, | L] =

Wi (Yk, Tht1)/we(Yy). Otherwise, if Yy, = s, then we have

/ ZOO 1 Wi (8, Trt1)  Wi(S, Trp1)
E 1 =x pr— . —
[ Forimsens| }—T}J k—0 (we(s) + 1)k wi(s) +1 wi ()
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Hence, we can write
({Y =Ty, k+1 {wj € Lkj }] 0) = E[gk(yba s ,Yk,Wo, s 7("}]6)]

where

k
w Y,x
9k (Yo, .o YiyWo, ooy wp) = ——— kH Hly :rZlejEE
=0 7=0

By the inductive hypothesis, we have

E[gk(Yb, ce ,Yk,wo, T ,wk)] = E[gk(Xo, e ,Xk,wo, Ce ,U)k)]
Working backwards, we see that

Elgi(Xo, . .-, X, wo, ..., wi)] =P ({Xi = 21120, {w; € E;}E).

This gives (3) for t < k + 1. It follows that (3.2) is well-defined for ¢ < 7541 — 1.
Next, we show that (4) also holds for t = k + 1. Again, it suffices to show that

P ({X; =z}, {w; € B} =P ({Vi = z:}0, {w; € B 1)

for any zo,..., x50 € V and Ey, ..., Exy1 € B(Wg). Beginning with the right-hand

side, we have

[k+1 k+1

E H 1}/;::31 H 1LUj€Ej
Li=0 7=0

[k+1 k

H 1Y =x; H 1UJ]€E E |:1Wk+1€Ak+1 | ng+1 1i|] :

L:=0 7=0

({Y = k—i—l {w] c E k—i—l)

I
=

Since (3.2) is well-defined for ¢t < 73,41 — 1, we have
E[lwk+16Ek+1 | g;k+1_1] - fk7Ek+1 (}/b? cet aYk‘-i-la UJO, tet ’wk‘)
Hence, we can write

({Y = Ty, k+1 {w] € E k+1) = [hk(Yb, vy Yiiq,wo, - ,wk)]
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where

k+1 k
h’k’(}/bv s 7Yk‘+17w07 CIE awt) - fk:7Ek+1 (%7 CIC 7Yk+17w07 CIC ,Wk) : H 1Yz=x1 H 1WjEEj'
i=0 7=0

Since (3) holds for t = k 4 1, we have
E[hr(Yo, ..., Yir1, wo, - - -, wi)] = Elhg(Xo, - . ., Xgy1, wo, - - ., wg)].
Working backwards, we see that
E[h(Xo, -, Xir1, wo, - . wi)] = P ({X; = 2,14, {w; € E; fié) :

This gives (4) for ¢t < k + 1. By induction, we conclude our proof. O

3.3.4 Proof of Main Result

We are now ready to prove Theorem 1 in full generality.

Proof of Theorem 1. We aim to use Lemma 1. We will check the necessary conditions
for G" and {(X], w}) }+en constructed above. First, choose s" as the origin of G’. Then,
s’ has a single neighbor s and wyj is deterministic. Since wy(s,s’) = 1 for all t € N,
combining this with Lemma 6 it follows that {(X], w;)}sen is bounded. Finally, since

the weights are frozen when {(X], w})}ien traverses along {s, s'}, it follows that

Yolrile) =i (@)= DI (€)= v (@] = D Irile) = riale)]

te k.e

where the second equality is by Lemma 6. Hence, ), |ri(e) — 71, (e)]| is also bounded.
To conclude, by Lemma 1, we see that {(X], w}) }+en inherits the recurrence or transience

of (G', wy). Moreover, note that
R, V) = 1+ R(5,0V3)

where R’ is the effective resistance function on (G',wy) with s’ as the origin and R
is the effective resistance function on (G,wp) with s as the origin. Hence, it follows

that (G,wg) and (G’,w}) are either both recurrent or both transient. To conclude, if
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(G, wyp) is recurrent, it follows that (G',wy(), then {(X/, w})}ten, then {(Xi, wy) hen are
also recurrent where the last implication was discussed in section 4.1. The case is the

same for transience and we conclude our proof. O]



Chapter 4
Concluding Remarks

We conclude by discussing insight from our attempts and results along with possible
future work.

First, we discuss the martingale method for showing recurrence or transience. In
order to tackle the monotone-bounded problem using this method, we remark that one
must construct a super/submartingale that only works when the RWCE is nonadaptive.
For instance, one could construct a supermartingale that uses information about all
weights {w,;}72, in advance, which would not be well-defined if the RWCE is adaptive.
Moreover, it could also be possible that the constructed function only has the mar-
tingale property when the RWCE is nonadaptive. In either case, we remark that one
must crucially exploit the fact that the RWCE is nonadaptive when constructing the
supermartingale. Of course, this was not exploited in our construction (section 3.2.1)
or in the construction of Amir et al. in [2].

Moreover, it would be nice if one could improve the double summation in our main
result by changing the summation over e € E into a supremum over e € . One place
in our proof that can be greatly improved is our usage of Lemma 5. Here, we used the
very rough estimate of bounding the unit flows by one, but in theory one could aim to
bound the voltage differences much more accurately. This may help in improving upon
our main result.

Finally, we discuss the case of RWCEs with deterministic weights uniformly con-
verging to a recurrent graph. In this direction, it would be interesting to improve upon
Corollary 2 by investigating the slowest rate of convergence that is still able to guaran-

tee recurrence: Recall that in Corollary 2, we showed ), & < oo is sufficient, but &

33
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that decay even slower should also be able to guarantee recurrence on general graphs.
Moreover, it would be nice to remove the assumption on bounded degree that we make
in Corollary 2.

The final problem in this direction is determining the location of the phase-transition
for the outward-biased RWCE on trees we discussed at the end of section 2.2. Given
biases of ¢, = 1/t*, it was shown in [14] that o = 1/2 is the threshold for G = N. In
a sense, note that N is the “least” transient infinite graph since there is only one path
to infinity. Even in this graph, any a < 1/2 creates a bias too strong that makes the
RWCE transient. Considering general recurrent trees, these are now more “transient”
than N since there are more paths to infinity. Hence, it is not obvious if the threshold
for recurrence will also be at aw = 1/2, or whether it would be at a value strictly larger
than 1/2. Answering this for general trees would require a completely different approach

compared to our usage of the central limit theorem in section 2.2.
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